Abstract:
Buffer chamber including robots, a carousel and at least one heating module for use with a batch processing chamber are described. Robot configurations for rapid and repeatable movement of wafers into and out of the buffer chamber and cluster tools incorporating the buffer chambers and robots are described.
Abstract:
Various embodiments of batch load lock apparatus are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Systems including the batch load lock apparatus and methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
Abstract:
Wafer cassettes and methods of use that provide heating a cooling to a plurality of wafers to decrease time between wafer switching in a processing chamber. Wafers are supported on a wafer lift which can move all wafers together or on independent lift pins which can move individual wafers for heating and cooling.
Abstract:
Embodiments of substrate handling systems capable of heating and/or cooling batches of substrates being transferred into and out of various substrate processing chambers are provided. Methods of substrate handling are also provided, as are numerous other aspects.
Abstract:
A system comprising a spinning disk is disclosed. The system comprises a semiconductor processing system, such as a high energy implantation system. The semiconductor processing system produces a spot ion beam, which is directed to a plurality of workpieces, which are disposed on the spinning disk. The spinning disk comprises a rotating central hub with a plurality of platens. The plurality of platens may extend outward from the central hub and workpieces are electrostatically clamped to the platens. The plurality of platens may also be capable of rotation. The central hub also controls the rotation of each of the platens about an axis orthogonal to the rotation axis of the central hub. In this way, variable angle implants may be performed. Additionally, this allows the workpieces to be mounted while in a horizontal orientation.
Abstract:
Embodiments of the disclosure are directed to load lock chambers and methods of using load lock chambers. The load lock chambers include a middle section, an upper section connected to the middle section and a lower section connected to the middle section. A slit valve in a facet on the outside of the middle section provides an opening to access the middle volume from outside the load lock.
Abstract:
Embodiments of the disclosure are directed to load lock chambers and methods of using load lock chambers. The load lock chambers include a middle section, an upper section connected to the middle section and a lower section connected to the middle section. A slit valve in a facet on the outside of the middle section provides an opening to access the middle volume from outside the load lock.
Abstract:
Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
Abstract:
Various embodiments of wafer processing systems including batch load lock apparatus with temperature control capability are disclosed. The batch load lock apparatus includes a load lock body including first and second load lock openings, a lift assembly within the load lock body, the lift assembly including multiple wafer stations, each of the multiple wafer stations adapted to provide access to wafers through the first and second load lock openings, wherein the batch load lock apparatus includes temperature control capability (e.g., heating or cooling). Batch load lock apparatus is capable of transferring batches of wafers into and out of various processing chambers. Methods of operating the batch load lock apparatus are also provided, as are numerous other aspects.
Abstract:
Apparatus and methods for heating and cooling a plurality of substrate wafers are provided. LED lamps are positioned against the back sides of a plurality of cold plates. In some embodiments, wafers are supported on a wafer lift which can move all wafers together. In some embodiments, wafers are supported on independent lift pins which can move individual wafers for heating and cooling. Some embodiments of the disclosure provide for decreased time between wafer switching in a processing chamber.