Abstract:
Implementations described herein generally relate to a flexible display devices, and more specifically to flexible cover lens films. The flexible cover lens film has improved strength, elasticity, optical transmission, and anti-abrasion properties, and contains a multi-layer hardcoat disposed on a substrate layer. The substrate layer has a thickness of 2 μm to 100 μm and the multi-layer hardcoat has a thickness of 1 μm to 30 μm. The multi-layer hardcoat contains a first layer deposited using a wet deposition process, a second layer deposited using a dry deposition process, and one or more adhesion promotion layers. For optical properties, the multi-layer hardcoat has a total transmission greater than 88%, a haze of about 1% or less, and a yellowness index of b*
Abstract:
A deposition apparatus for coating a flexible substrate is described. The deposition apparatus comprises a first spool chamber housing a storage spool for providing the flexible substrate, a deposition chamber arranged downstream from the first spool chamber, and a second spool chamber arranged downstream from the deposition chamber and housing a wind-up spool for winding the flexible substrate thereon after deposition. The deposition chamber comprises a coating drum for guiding the flexible substrate past a plurality of deposition units including at least one deposition unit having a graphite target. The coating drum is connected to a device for applying an electrical potential to the coating drum.
Abstract:
An apparatus for processing a flexible substrate is provided including a vacuum chamber having a first chamber portion, second chamber portion and third chamber portion. The apparatus further includes an unwinding shaft supporting the flexible substrate to be processed and a winding shaft supporting the flexible substrate after processing, wherein the unwinding shaft and the winding shaft are disposed in the first chamber portion, a first wall separating the first chamber portion from the second chamber portion, wherein the first wall is inclined with respect to a vertical and horizontal orientation, a coating drum having a first portion disposed in the second chamber portion and a second portion disposed in the third chamber portion, and a plurality of processing stations disposed at least partially in the third chamber portion, wherein a majority of the plurality of the processing stations are disposed below a rotational axis of the coating drum.
Abstract:
A vacuum processing system for a flexible substrate is provided. The vacuum processing system includes a first chamber adapted for housing a supply roll for providing the flexible substrate; a second chamber adapted for housing a take-up roll for storing the flexible substrate after processing; a substrate transport arrangement including one or more guide rollers for guiding the flexible substrate from the first chamber to the second chamber; a maintenance zone between the first chamber and the second chamber wherein the maintenance zone allows for maintenance access to or of at least one of the first chamber and the second chamber; and a first process chamber for processing the flexible substrate.
Abstract:
Implementations described herein generally relate to a flexible display devices, and more specifically to flexible cover lens films. The flexible cover lens film has improved strength, elasticity, optical transmission, and anti-abrasion properties, and contains a multi-layer hardcoat disposed on a substrate layer. The substrate layer has a thickness of 2 μm to 100 μm and the multi-layer hardcoat has a thickness of 1 μm to 30 μm. The mufti-layer hardcoat contains a first layer deposited using a wet deposition process, a second layer deposited using a dry deposition process, and one or more adhesion promotion layers. For optical properties, the multi-layer hardcoat has a total transmission greater than 88%, a haze of about 1% or less, and a yellowness index of b*
Abstract:
A process for manufacturing a transparent body for a touch screen panel is described. The process includes: depositing a first transparent layer stack over a flexible transparent substrate, wherein said first transparent layer stack includes at least a first dielectric film with a first refractive index, and a second dielectric film with a second refractive index different from the first refractive index; providing a transparent conductive film over the first transparent layer stack; depositing a layer of a conductive material over the transparent conductive film; providing a polymer layer over the layer of a conductive material; imprinting a pattern, e.g. a 3D pattern, on the polymer layer; etching the layer of the conductive material based upon the pattern to form conductive paths for the touch screen panel; and etching the transparent conductive film based upon the pattern to form a structured transparent conductive pattern for touch detection.