Abstract:
This disclosure relates to accommodating link budget constrained wireless devices performing random access procedures. A base station may detect a preamble message from a wireless device. It may be determined that the preamble message is received from a link budget constrained wireless device. Characteristics of a response message may be selected based at least in part on determining that the preamble message is received from a link budget constrained wireless device. The response message may be transmitted to the link budget constrained wireless device using the selected characteristics.
Abstract:
Wireless communication devices (UEs) may include multiple receive (RX) chains and associated antennas, and at least one transmit (TX) chain co-located with one of the RX chains. The UE may track instant fading of the antenna gain(s) during reception of packets from an associated access point (AP) device to which the UE intends to transmit packets. The UE may also track long term antenna gain(s), using any packets received at the multiple RX chains within the UE. At a switching occasion, a decision is made by the UE whether to switch antennas. If the instant fading detection is based on packets received no later than a specified time period prior to the switching occasion, then the UE may make the switching decision based on the results of the instant fading tracking. Otherwise, the UE may make the switching decision based on the results of the long term antenna gain tracking.
Abstract:
In some embodiments, a user equipment (UE) and base station implement improved communication methods which enable a UE that is peak current limited to perform UL transmissions which are consistent with the UL timeline. Embodiments are also presented which enable a UE that is peak current limited to utilize a new form of distributed TTI (transmit time interval) bundling for improved uplink communication performance. In performing “distributed” TTI bundling, the UE may transmit a plurality of redundancy versions of first information to the base station, wherein the plurality of redundancy versions are transmitted in non-consecutive sub-frames with a periodicity of X ms. After the plurality of redundancy versions of first information are transmitted to the base station, the base station may provide a single acknowledge/negative acknowledge (ACK/NACK) to the UE. A method for dynamically generating and using a bundle size for TTI bundling is also disclosed.
Abstract:
Mechanisms are disclosed for improved transmission of uplink control information by a user equipment (UE) that is link budget limited. In one embodiment, the UE transmits a message to the base station indicating that the UE is link budget limited. In response to the message, the base station sends an uplink grant to the UE, enabling the UE to transmit uplink control information on the physical uplink shared channel (PUSCH) instead of on the Physical Uplink Control Channel (PUCCH). In another embodiment, the base station sends an uplink grant to a link-budget-limited UE each time downlink traffic is transmitted to the UE, enabling the UE to send ACK/NACK feedback on the PUSCH instead of the PUCCH. In another embodiment, the UE transmits a scheduling request (SR) to the base station as part of a random access procedure, enabling the SR to be transmitted on the PUSCH instead of the PUCCH.
Abstract:
A user equipment (UE) operating in a communication system comprising a base station and one or more UEs. The UE may be configured to operate on or “camp” on two different networks with one radio. In this exemplary system, the radio may be normally connected to the first network (NW1) and may from time to time be “tuned away” from NW1 to a second network (NW2). The UE may inform NW1 that it has tuned away to another network, e.g., using start and end indicators. This information may prevent NW1 from wasting downlink capacity by unnecessarily allocating downlink resources to the UE during the tune-away. Alternatively, or in addition, this information may prevent NW1 from penalizing the UE, e.g., by reducing its future downlink allocations, since the UE does not respond to NW1 commands during the tune-away.
Abstract:
A user equipment (UE) device may communicate according to a new device category satisfying specified QoS (quality of service) requirements while also satisfying specified link budget requirements, and/or additional optimization requirements. The UE device may communicate with a cellular base station according to a first mode of operation associated with the new device category, and may switch to communicating with the cellular base station according to a second mode of operation associated with a second (pre-existing) device category in response to the link budget requirements exceeding a specified value and the quality of service requirements not being sensitive. The UE device may also switch to communicating with the cellular base station according to a third mode of operation associated with a third (pre-existing) device type in response to the link budget requirement not exceeding the specified value, or the QoS requirements being sensitive and a downlink throughput requirement exceeding a specified throughput value.
Abstract:
Embodiments described herein relate to providing reduced power consumption in wireless communication systems, such as 802.11 WLAN systems. Timing information regarding power save opportunities (PSOPs) may be provided in communication frames, which may inform mobile devices of expected frame exchange periods during which they may transition to a Doze state. Additional PSOP information may be included in beacon frames, which may inform mobile devices of expected multicast periods during which they may transition to a Doze state. This may operate to provide improvements in terms of power consumption.
Abstract:
End-to-end delay adaptation in conjunction with connected discontinuous reception (C-DRX) mode communication during cellular voice calls. A Voice over LTE (VoLTE) call may be established between a first wireless user equipment (UE) device and a second UE. End-to-end delay between real-time transport protocol (RTP) layers of the first UE and the second UE for the VoLTE call may be estimated. The end-to-end delay may be compared with one or more thresholds A C-DRX cycle length for the VoLTE call may be modified based on comparing the end-to-end delay with the one or more thresholds.
Abstract:
This disclosure relates to providing system information for cell access to link budget limited devices. According to some embodiments, a base station may transmit an announcement information block (AIB) in a downlink shared data channel (e.g., PDSCH), wherein the AIB contains information useable by a UE in determining the location of system information in the downlink shared data channel. The UE can thus determine the location of and decode system information without having to decode a downlink control channel (e.g., PDCCH). This may be important for certain classes of devices, such as link budget limited devices, which have issues in decoding the downlink control channel. Improved paging scheduling techniques are also disclosed which more efficiently use PDCCH paging resources.
Abstract:
A host device may include a wireless interface for communications, a memory, and a processor coupled to the memory and to the wireless interface. The host device may receive, via the wireless interface, an advertisement message from a client device. The advertisement message may include an identifier associated with the client device and a request for communication of data from a cloud-based service. Responsive to the advertisement, the host may send the identifier to the cloud-based service. The host may receive from the cloud-based service, a proxy indication of available data associated with the client. Responsive to receiving the proxy indication of available data, the host may provide, via the wireless interface, a connection request including a client indication of the available data from the cloud-based service to the client. After receiving the available data from the cloud-based service, the host device may send the available data to the client.