Abstract:
A principal film comprising a first polymeric component wherein the principal film has: (1) first and second major faces; (2) a land portion wherein the principal film is capable of thermally-induced self- forming; and (3) one or more modification zones, each comprising a central portion and a rim portion surrounding the central portion and being surrounded by land portion, wherein the average thickness of each rim portion is greater than the average thickness of the land portion surrounding the modification zone, the average thickness of each central portion is less than the average thickness of the land portion surrounding the modification zone and is greater than zero. Also methods for making such films and articles comprising such films.
Abstract:
A multi-component fiber including at least first and second components. In some cases, at least a portion of the first component is opaque and microporous, and the second component is different from the first component. In some cases, at least a portion of the second component can be seen through at least a portion of the first component. A fiber having an opaque, microporous region and a see-through region of lower porosity is also disclosed. Fibrous webs including such fibers are also disclosed. In some cases, the fibrous web has at least one first region where first portions of the multiple fibers are opaque and microporous and at least one second region where second portions of the multiple fibers form a see-through region of lower porosity. Articles and laminates including the fibrous webs are disclosed. Methods of making the fibers, fibrous webs, and articles are also disclosed.
Abstract:
A structured film of a semi-crystalline polyolefin and a beta-nucleating agent is disclosed. The structured film has a backing and upstanding posts attached to the backing. At least a portion of the film typically includes beta-spherulites. In some embodiments, the backing is microporous while the upstanding posts have lower porosity. A method of making a structured film is also disclosed. The method includes extruding a melt of a polyolefin and a beta-nucleating agent in the presence of a tool to provide the structured film having upstanding posts on a backing and cooling at least a portion of the structured film to a temperature sufficient to form beta-spherulites. In some embodiments, the method further includes stretching the structured film containing beta-spherulites to provide micropores in the backing.
Abstract:
A laminate of an at least partially reticulated thermoplastic film joined to an extensible carrier. The reticulated thermoplastic film includes a backing with openings and discrete elements protruding from the first major surface. There are two discrete elements aligned in a first direction abutting opposite ends of any given opening. In a second direction perpendicular to the first direction, there is one discrete element between the given opening and an adjacent opening aligned in the second direction. Each portion of the thermoplastic backing around the given opening is plastically deformed in its lengthwise direction. A method of making a laminate is also disclosed. The method includes stretching a thermoplastic backing having a plurality of discrete elements in the first direction and laminating the backing to an extensible carrier. Subsequently stretching the laminate in a second direction forms a tear in the thermoplastic backing between two adjacent of the discrete elements.
Abstract:
A composite fabric includes a nonwoven fabric layer having non-bonded areas and a structured film layer discontinuously bonded to the nonwoven fabric layer. The discontinuously bonded nonwoven fabric layer and the structured film layer share an overlapping area with at least one set of coincident bond sites. The discontinuously bonded nonwoven fabric does not have another bonding pattern in the overlapping area distinct from the at least one set of coincident bond sites. A method of forming a composite fabric is also described. The method includes forming a fiber layer including a mat of at least partially unconsolidated fibers, positioning a structured film layer and the fiber layer such that they overlap, and discontinuously bonding the mat into a discontinuously bonded nonwoven fabric while simultaneously bonding the structured film layer to the nonwoven fabric layer. An apparatus for forming a composite fabric is also described.
Abstract:
The method of making a laminate (100) includes stretching a thermoplastic layer (102) so that it plastically deforms, relaxing the plastically deformed thermoplastic layer (102) to reduce its tensile strain, and subsequently laminating the thermoplastic layer (102) to a substrate (104) to make the laminate (100). The stretching, relaxing, and laminating are completed in-line. The thermoplastic layer has a first surface and a second surface opposite the first surface, with the first surface of the thermoplastic layer bearing a plurality of male fastening elements. The second surface of the thermoplastic layer (100) is laminated to the substrate (104).
Abstract:
The method of making a laminate (100) includes stretching a thermoplastic layer (102) so that it plastically deforms, relaxing the plastically deformed thermoplastic layer (102) to reduce its tensile strain, and subsequently laminating the thermoplastic layer (102) to a substrate (104) to make the laminate (100). The stretching, relaxing, and laminating are completed in-line. The thermoplastic layer has a first surface and a second surface opposite the first surface, with the first surface of the thermoplastic layer bearing a plurality of male fastening elements. The second surface of the thermoplastic layer (100) is laminated to the substrate (104).
Abstract:
The article includes a thermoplastic layer having opposing first and second side edges and a first surface bearing male fastening elements. The thermoplastic layer is plastically deformed and has a retardance profile having an average retardance along a line from the first edge to a location 500 micrometers from the first edge and a distance from the first edge where 75% of the average retardance is observed of at least 10 micrometers. In some cases, a distance between the first and second side edges is up to 50 millimeters. In some cases, the article is a fastening tab. The method includes providing a thermoplastic film having opposing first and second side edges, with a distance between the opposing side edges of up to 50 millimeters, and stretching the thermoplastic film to form the thermoplastic layer, which is plastically deformed. The first surface of the thermoplastic film bears male fastening elements.
Abstract:
A composite fabric includes a nonwoven fabric layer having non-bonded areas and a structured film layer discontinuously bonded to the nonwoven fabric layer. The discontinuously bonded nonwoven fabric layer and the structured film layer share an overlapping area with at least one set of coincident bond sites. The discontinuously bonded nonwoven fabric does not have another bonding pattern in the overlapping area distinct from the at least one set of coincident bond sites. A method of forming a composite fabric is also described. The method includes forming a fiber layer including a mat of at least partially unconsolidated fibers, positioning a structured film layer and the fiber layer such that they overlap, and discontinuously bonding the mat into a discontinuously bonded nonwoven fabric while simultaneously bonding the structured film layer to the nonwoven fabric layer. An apparatus for forming a composite fabric is also described.
Abstract:
A polymeric membrane. The membrane can include a polymeric membrane made from a polymer selected from an aromatic sulfone polymer, polyamide, cellulose, cellulose acetate, polymethylmethacrylate, polyvinylalcohol, and polyacrylnitril, wherein the polymeric membrane has a major surface; a stilbenoid, isoflavone or flavone coated on the major surface of the polymeric membrane.