Abstract:
A prism including a substrate faceted to provide a plurality of flat surfaces, wherein at least two of the plurality of surfaces, each including a filter coating, form at least two filter surfaces, wherein each filter surface selectively permits passage of a predetermined wavelength and reflects remaining wavelengths along an optical path towards another of the plurality of surfaces, optionally another filter surface, wherein an angle of incidence of each of the plurality of surfaces along the optical path is equal or nearly equal. An apparatus incorporating the prism and its use for splitting a light spectrum into a plurality of wavelengths or wavelength ranges.
Abstract:
A method of assessing cytolysis of cancer cells, the method including: providing a cell substrate impedance monitoring cartridge having a plurality of chambers, each chamber having an electrode array configured for measuring cell-substrate impedance, wherein different chambers are preloaded with different target cells embodied as cancer cells of different lineage, origin or stage; adding effector cells to the plurality chambers for interaction with the target cells, wherein the effector cells are immune cells; monitoring cell-substrate impedance of the plurality of chambers before and after adding the effector cells and optionally deriving an impedance-based parameter from the impedances; and determining effectiveness of effector cell killing of the different target cells by comparing the impedances or impedance-based parameters over time.
Abstract:
Extracellular recording devices with reference electrodes positioned in a cell free zone and methods of conducting extracellular recording. Parallel cell-substrate impedance monitoring and extracellular recording of excitable cells such as excitable cells, cardiomyocytes, and cardiomyocyte precursor cells using devices that switch between extracellular recording and impedance monitoring modes.
Abstract:
A system for detecting signal components of light induced by multiple excitation sources, which includes a flow channel having two spatially separated optical interrogation zones; a light illumination subsystem that directs each of two light beams of different wavelengths to a different zone of the optical interrogation zones; a detector subsystem that converts detected light into a total electrical signal having both modulated and unmodulated electrical signals; and a processor that determines signal components from the light detected from each of the optical interrogation zones.
Abstract:
A method for assaying target molecules in a sample liquid, the method comprising: providing an impedance monitoring device operably connected to an impedance analyzer; adding a sample liquid suspected of having target molecules to the well thereby permitting binding of target molecules to the capture molecules; monitoring impedance of the well; and determining the presence, amount or concentration of target molecules in the liquid sample from the monitored impedance. The device includes a nonconducting substrate having a well, at least two electrodes fabricated on a bottom of the well and on a same plane, wherein the surfaces of the at least two electrodes are modified with capture molecules configured to bind target molecules in a liquid sample, and at least two connection pads electrically connected to the at least two electrodes.
Abstract:
A method of identifying a potential therapeutic compound that affects a Receptor Tyrosine Kinase (RTK) pathway in cancer cells, which includes: providing a device capable of measuring cell-substrate impedance; culturing cancer cells in serum-free media in at least two wells of the device; adding to a first well a proposed therapeutic compound that affects a RTK pathway and a RTK stimulating factor for the RTK pathway to form a test well, and adding to another well the RTK stimulating factor to form a control well; continuously monitoring cell-substrate impedance of the at least two wells and optionally determining cell indices from the monitored cell-substrate impedance; and determining a difference in impedance or optionally cell index between the test well and control well; and if significantly different, concluding the proposed therapeutic compound is therapeutically active in the RTK pathway within the cancer cells.
Abstract:
An optical engine for use in a bench top flow cytometer, the optical engine comprising a set of lasers; a different set of beam shaping optics for each laser, wherein each set comprises two lenses to adjustably focus light horizontally along an x-axis to a same horizontal position and vertically along a y-axis to a different vertical position along a same plane; collection optics for collecting fluorescence from the flow cell; filtration optics that filter the collected fluorescence from the flow cell into different detection channels according to wavelength ranges; and a detector for each detection channel that converts the filtered fluorescence to electrical signals, wherein electrical signals are processed so that the fluorescence from each laser at the different vertical positions is distinguished at the same detector.
Abstract:
A system for detecting signal components of light induced by multiple excitation sources, which includes a flow channel having two spatially separated optical interrogation zones; a light illumination subsystem that directs each of two light beams of different wavelengths to a different zone of the optical interrogation zones; a detector subsystem that converts detected light into a total electrical signal having both modulated and unmodulated electrical signals; and a processor that determines signal components from the light detected from each of the optical interrogation zones.
Abstract:
A system for detecting signal components of light induced by multiple excitation sources including: a flow channel including at least two spatially separated optical interrogation zones; a non-modulating excitation source that directs a light beam of a first wavelength at a near constant intensity onto a first of the optical interrogation zones; a modulating excitation source that directs a light beam of a second wavelength with an intensity modulated over time at a modulating frequency onto a second of the optical interrogation zones; a detector subsystem comprising a set of detectors configured to detect light emitted from particles flowing through the at least two optical interrogation zones and to convert the detected light into a total electrical signal; and a processor that determines signal components from the light detected from each of the optical interrogation zones.
Abstract:
A method for assaying target molecules in a sample liquid, the method comprising: providing an impedance monitoring device operably connected to an impedance analyzer; adding a sample liquid suspected of having target molecules to the well thereby permitting binding of target molecules to the capture molecules; monitoring impedance of the well; and determining the presence, amount or concentration of target molecules in the liquid sample from the monitored impedance. The device includes a nonconducting substrate having a well, at least two electrodes fabricated on a bottom of the well and on a same plane, wherein the surfaces of the at least two electrodes are modified with capture molecules configured to bind target molecules in a liquid sample, and at least two connection pads electrically connected to the at least two electrodes.