Abstract:
A thermally assisted magnetic writing device including a first magnetic layer known as the “reference layer,” a second magnetic layer known as the “storage layer” that presents a variable magnetization direction, a spacer situated between the reference layer and the storage layer and a first antiferromagnetic layer in contact with the storage layer, the first antiferromagnetic layer being able to trap the magnetization direction of the storage layer. The magnetic device also includes a stabilization layer made of a ferromagnetic material, the stabilization layer being in contact with the first antiferromagnetic layer.
Abstract:
Spin current generators and systems and methods for employing spin current generators. A spin current generator may be configured to generate a spin current polarized in one direction, or a spin current selectively polarized in two directions. The spin current generator may by employed in spintronics applications, wherein a spin current is desired.
Abstract:
An artificial magnetic conductor having a surface impedance greater than 100 Ω, includes a ground plane, and a frequency-selective surface that is transparent for certain wavelengths and reflective for a range of wavelengths. The frequency-selective surface includes an array of conductive resonant elements arranged alongside one another in at least two different directions parallel to the ground plane. Each of these conductive resonant elements includes a sub-layer of ferromagnetic material having a relative permeability greater than 10 at a frequency of 2 GHz and having a thickness less than the skin thickness of the ferromagnetic material.
Abstract:
A magnetic device is provided in one example that comprises a free layer having a magnetic anisotropy. The magnetic anisotropy is at least partially non-uniform. The magnetic device further comprises an antiferromagnetic layer adjacent to and weakly exchange coupled with the free layer, wherein the weak exchange coupling reduces the non-uniformity of the magnetic anisotropy of the free layer.
Abstract:
A magnetic tunnel junction cell having a free layer, a ferromagnetic pinned layer, and a barrier layer therebetween. The free layer has a central ferromagnetic portion and a stabilizing portion radially proximate the central ferromagnetic portion. The construction can be used for both in-plane magnetic memory cells where the magnetization orientation of the magnetic layer is in the stack film plane and out-of-plane magnetic memory cells where the magnetization orientation of the magnetic layer is out of the stack film plane, e.g., perpendicular to the stack plane.
Abstract:
A magnetic tunnel junction cell having a free layer, a ferromagnetic pinned layer, and a barrier layer therebetween. The free layer has a central ferromagnetic portion and a stabilizing portion radially proximate the central ferromagnetic portion. The construction can be used for both in-plane magnetic memory cells where the magnetization orientation of the magnetic layer is in the stack film plane and out-of-plane magnetic memory cells where the magnetization orientation of the magnetic layer is out of the stack film plane, e.g., perpendicular to the stack plane.
Abstract:
A magnetic tunnel junction cell having a free layer, a ferromagnetic pinned layer, and a barrier layer therebetween. The free layer has a central ferromagnetic portion and a stabilizing portion radially proximate the central ferromagnetic portion. The construction can be used for both in-plane magnetic memory cells where the magnetization orientation of the magnetic layer is in the stack film plane and out-of-plane magnetic memory cells where the magnetization orientation of the magnetic layer is out of the stack film plane, e.g., perpendicular to the stack plane.
Abstract:
Magnetic multilayer structures, such as magnetic or magnetoresistive tunnel junctions (MTJs) and spin valves, having a magnetic biasing layer formed next to and magnetically coupled to the free ferromagnetic layer to achieve a desired stability against fluctuations caused by, e.g., thermal fluctuations and astray fields. Stable MTJ cells with low aspect ratios can be fabricated using CMOS processing for, e.g., high-density MRAM memory devices and other devices, using the magnetic biasing layer. Such multilayer structures can be programmed using spin transfer induced switching by driving a write current perpendicular to the layers to switch the magnetization of the free ferromagnetic layer.
Abstract:
An inductor includes: a substrate; an insulator layer; a conductive coil; and a permeability-enhancing film of a multi-layer structure. The multi-layer structure includes at least one repeating unit that has at least two layers. The two layers exhibit an exchange-coupling effect and include a first ferromagnetic layer of a first ferromagnetic material and an exchange-coupling layer.
Abstract:
Magnetic multilayer structures, such as magnetic or magnetoresistive tunnel junctions (MTJs) and spin valves, having a magnetic biasing layer formed next to and magnetically coupled to the free ferromagnetic layer to achieve a desired stability against fluctuations caused by, e.g., thermal fluctuations and astray fields. Stable MTJ cells with low aspect ratios can be fabricated using CMOS processing for, e.g., high-density MRAM memory devices and other devices, using the magnetic biasing layer. Such multilayer structures can be programmed using spin transfer induced switching by driving a write current perpendicular to the layers to switch the magnetization of the free ferromagnetic layer.