Abstract:
A method and a transmitting station for transmitting data in a wireless local area network are discussed. The method according to an embodiment includes generating a physical layer convergence procedure (PLCP) protocol data unit (PPDU), the PPDU including a Very High Throughput Signal (VHT-SIG) field and a PLCP Service Data Unit (PSDU); and transmitting the PPDU to a receiving station. The VHT-SIG field includes a class type and identification information, the class type indicates that the PPDU is transmitted by an access point (AP) or a non-AP station, the identification information includes a partial identifier formed from a Basic Service Set Identifier (BSSID), and the partial identifier has a length shorter than a length of the BSSID.
Abstract:
A method for transmitting a Channel State Information (CSI) reporting at a user equipment (UE) in a wireless communication system is disclosed. The method includes transmitting a rank indicator (RI) and a first type precoding matrix indicator (PMI) to a base station (BS) according to a first CSI feedback type; transmitting a second type PMI to the BS according to a second CSI feedback type, wherein the RI and the first type PMI are jointly coded, and transmitted through a physical uplink control channel (PUCCH), wherein the RI and the second type PMI are not jointly coded, and transmitted through the PUCCH, wherein a transmission period of the first type PMI is different than a transmission period of the second type PMI, wherein the transmission period of the first type PMI is longer than the transmission period of the second type PMI, and wherein the RI is 2, 3 or 4 bits, and a size of the jointly coded RI and the first type PMI are 4 bits.
Abstract:
A method for transmitting a control signal, performed by a wireless device. The method according to one embodiment includes allocating resource elements (REs) for a control channel; and transmitting the control signal through the Res. Each RE in the REs for the control channel is associated with one out of two antenna ports. The two antenna ports are included in a plurality of antenna ports used for transmitting demodulation reference signals (DM RS).
Abstract:
A method for transmitting information of resources for use in transmission of ACK/NACK signals in a mobile communication system is disclosed. An example method for receiving ACK/NACK signals in a mobile communication system is also disclosed. When resources for transmission of data and resources for transmission of control information of the data are scheduled through virtual unit resources, the method identifies information of resources for receiving an ACK/NACK signal for transmission data mapped to information of at least one of a virtual unit resource allocated to the transmission data and a virtual unit resource allocated to control information of the transmission data, and receives the ACK/NACK signal for the transmission data through the information of resources for receiving the ACK/NACK signal.
Abstract:
A method of decoding a backhaul downlink signal is presented. A relay node (RN) receives a higher layer signal indicating a maximum transmission rank from a base station (BS), receives control information containing a resource allocation for downlink data through a relay control channel from the BS, demodulates the control information, and receives the downlink data through a data channel based on the control information. The control information is mapped to resource elements (REs) which do not overlap with user equipment-specific reference signal (URS) REs in a control region which is used for the relay control channel transmission of the BS. The URS REs are reserved REs for URSs according to the maximum transmission rank.
Abstract:
A method for transmitting a sounding reference signal in a MIMO wireless communication system and an apparatus therefor are disclosed. The method for transmitting sounding reference signals (SRSs) in a MIMO wireless communication system comprises receiving sounding reference signal parameters from a base station; receiving information of the number of sounding reference signals which will be transmitted at a transmission time instant from the base station; if a plurality of sounding reference signals are provided, generating the sounding reference signals corresponding to each of the plurality of antennas by using the sounding reference signal parameters; and transmitting the generated sounding reference signals to the base station through their corresponding antennas at a specific transmission instant.
Abstract:
A method and a device for reporting a modulation and coding scheme (MCS) feedback in a wireless local area network are provided. A responding station receives, from a requesting station, a requesting Physical layer Protocol Data Unit (PPDU) for requesting a MCS feedback via a plurality of spatial streams. A recommended MCS is estimated under an assumption that the requesting station will transmit at least one first spatial stream among the plurality of spatial streams used for the requesting PPDU, The responding station transmits, to the requesting station, the MCS feedback including a recommended MCS field indicating the recommended MCS and a recommended stream field indicating a number of at least one recommended spatial stream. A number of the at least one first spatial stream used for estimating the recommended MCS is equal to the number of the at least one recommended spatial stream.
Abstract:
A method of transmitting a first uplink signal and a second uplink signal. The first uplink signal includes data of a transport block for initial transmission and the second uplink signal includes data of the transport block and control information. The control information of the second uplink signal is channel encoded to produce channel encoded control information. A number of encoded symbols of the channel encoded control information is determined by using: M X = ⌈ N X · β X · M RE PUSCH N data ⌉ where MX is the number of the encoded symbols of the channel encoded control information, NX is a payload size of the control information, βX is an offset value, Ndata a payload size of the data of the first uplink signal, MREPUSCH is a size of resources for a Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal, and “┌ ┐” denotes a ceiling function.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method of decoding a backhaul downlink signal of a relay node (RN). A higher layer signal indicating a maximum transmission rank is received from a base station (BS). Control information is received through a relay control channel from the BS. The control information is demodulated and mapped to resource elements (REs) which do not overlap with user equipment-specific reference signal (URS) REs in a control region which is used for the relay control channel transmission of the BS. The URS REs are reserved REs for URSs according to the maximum transmission rank. The control information is demodulated based on URSs transmitted by the BS on one fixed antenna port n, where n is a natural number.