Abstract:
A method of transmitting a first uplink signal and a second uplink signal. The first uplink signal includes data of a transport block for initial transmission and the second uplink signal includes data of the transport block and control information. The control information of the second uplink signal is channel encoded to produce channel encoded control information. A number of encoded symbols of the channel encoded control information is determined by using: M X = ⌈ N X · β X · M RE PUSCH N data ⌉ where MX is the number of the encoded symbols of the channel encoded control information, NX is a payload size of the control information, βX is an offset value, Ndata a payload size of the data of the first uplink signal, MREPUSCH is a size of resources for a Physical Uplink Shared Channel (PUSCH) transmission of the first uplink signal, and “┌ ┐” denotes a ceiling function.
Abstract:
A method and device for transmitting a first and second uplink signal, each having data and control information is provided. The method includes channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce. The channel encoding includes determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.
Abstract:
A method and device for transmitting a first and second uplink signal, each having data and control information is provided. The method includes channel encoding the control information of the second uplink signal based on a number of symbols of control information to produce. The channel encoding includes determining the number of symbols in accordance with a payload size of the data of the first uplink signal and a total number of transmissible symbols of a Physical Uplink Shared Channel (PUSCH) of the first uplink signal.