Abstract:
A gate stack structure with an etch stop layer is provided. The gate stack structure is formed over a substrate. A spacer is formed on a sidewall of the gate stack structure. The gate stack structure includes a gate dielectric layer, a barrier layer, a repair layer and the etch stop layer. The gate dielectric layer is formed on the substrate. The barrier layer is formed on the gate dielectric layer. The barrier layer and an inner sidewall of the spacer collectively define a trench. The repair layer is formed on the barrier layer and an inner wall of the trench. The etch stop layer is formed on the repair layer.
Abstract:
A semiconductor device and a method for fabricating the same are disclosed. A fin of the semiconductor device including a fin-shaped channel region is configured in the form of a non-uniform structure, and a leakage current caused by the electric field effect generated in the semiconductor device is prevented from being generated, resulting in an increased operation stability of the semiconductor device.
Abstract:
A high voltage metal oxide semiconductor device with low on-state resistance is provided. A multi-segment isolation structure is arranged under a gate structure and beside a drift region for blocking the current from directly entering the drift region. Due to the multi-segment isolation structure, the path length from the body region to the drift region is increased. Consequently, as the breakdown voltage applied to the gate structure is increased, the on-state resistance is reduced.
Abstract:
A semiconductor device and a method for manufacturing a local interconnect structure for a semiconductor device is provided. The method includes forming removable sacrificial sidewall spacers between sidewall spacers and outer sidewall spacers on two sides of a gate on a semiconductor substrate, and forming contact through-holes at source/drain regions in the local interconnect structure between the sidewall spacer and the outer sidewall spacer on the same side of the gate immediately after removing the sacrificial sidewall spacers. Once the source/drain through-holes are filled with a conductive material to form contact vias, the height of the contact vias shall be same as the height of the gate. The contact through-holes, which establish the electrical connection between a subsequent first layer of metal wiring and the source/drain regions or the gate region at a lower level in the local interconnect structure, shall be made in the same depth.
Abstract:
The field effect transistor comprises a substrate successively comprising an electrically conducting support substrate, an electrically insulating layer and a semiconductor material layer. The counter-electrode is formed in a first portion of the support substrate facing the semi-conductor material layer. The insulating pattern surrounds the semi-conductor material layer to delineate a first active area and it penetrates partially into the support layer to delineate the first portion. An electrically conducting contact passes through the insulating pattern from a first lateral surface in contact with the counter-electrode through to a second surface. The contact is electrically connected to the counter-electrode.
Abstract:
Performance of field effect transistors and other channel dependent devices formed on a monocrystalline substrate is improved by carrying out a high temperature anneal in a nitrogen releasing atmosphere while the substrate is coated by a sacrificial oxide coating containing easily diffusible atoms that can form negatively charged ions and can diffuse deep into the substrate. In one embodiment, the easily diffusible atoms comprise at least 5% by atomic concentration of chlorine atoms in the sacrificial oxide coating and the nitrogen releasing atmosphere includes NO. The high temperature anneal is carried out for less than 10 hours at a temperature less than 1100° C.
Abstract:
An example embodiment relates to a semiconductor device including a semiconductor element. The semiconductor element may include a plurality of unit layers spaced apart from each other in a vertical direction. Each unit layer may include a patterned graphene layer. The patterned graphene layer may be a layer patterned in a nanoscale. The patterned graphene layer may have a nanomesh or nanoribbon structure. The semiconductor device may be a transistor or a diode. An example embodiment relates to a method of making a semiconductor device including a semiconductor element.
Abstract:
A fin field-effect transistor structure includes a substrate, a fin channel and a high-k metal gate. The high-k metal gate is formed on the substrate and the fin channel. A process of manufacturing the fin field-effect transistor structure includes the following steps. Firstly, a polysilicon pseudo gate structure is formed on the substrate and a surface of the fin channel. By using the polysilicon pseudo gate structure as a mask, a source/drain region is formed in the fin channel. After the polysilicon pseudo gate structure is removed, a high-k dielectric layer and a metal gate layer are successively formed. Afterwards, a planarization process is performed on the substrate having the metal gate layer until the first dielectric layer is exposed, so that a high-k metal gate is produced.
Abstract:
A FinFET (p-channel) device is formed having a fin structure with sloped or angled sidewalls (e.g., a pyramidal or trapezoidal shaped cross-section shape). When using conventional semiconductor substrates having a (100) surface orientation, the fin structure is formed in a way (groove etching) which results in sloped or angled sidewalls having a (111) surface orientation. This characteristic substantially increases hole mobility as compared to conventional fin structures having vertical sidewalls.
Abstract:
A strained Ge-on-insulator structure is provided, comprising: a silicon substrate, in which an oxide insulating layer is formed on a surface of the silicon substrate; a Ge layer formed on the oxide insulating layer, in which a first passivation layer is formed between the Ge layer and the oxide insulating layer; a gate stack formed on the Ge layer, a channel region formed below the gate stack, and a source and a drain formed on sides of the channel region; and a SiN stress cap layer covering the gate stack to produce a strain in the channel region. Further, a method for forming the strained Ge-on-insulator structure is also provided.