Abstract:
An analysis apparatus is provided with: a light emitting part, a light dispersing part, a light detecting part, a storage unit, and a control unit. The light dispersing part disperses first reflected light reflected from a food product when the food product has been irradiated with light from the light emitting part. The light detecting part: generates first detection data by detecting the first reflected light dispersed; and, when a food product sample containing known ingredients is irradiated with light from the light emitting part, generates second detection data by detecting second reflected light reflected from the food product sample and dispersed by the light dispersing part. The storage unit stores a regression formula computed using the second detection data as a parameter. The control unit estimates the ingredients contained in the food product using the first detection data and the regression formula stored in the storage unit.
Abstract:
An optical filter is disclosed including two laterally variable bandpass filters stacked at a fixed distance from each other, so that the upstream filter functions as a spatial filter for the downstream filter. This happens because an oblique beam transmitted by the upstream filter is displaced laterally when impinging on the downstream filter. The lateral displacement causes a suppression of the oblique beam when transmission passbands at impinging locations of the oblique beam onto the upstream and downstream filters do not overlap.
Abstract:
An imaging spectrometer, covering the visible through infrared wavelengths, which disperses the light by a plane diffraction grating behind a wedged optical element. This design uses an achromatic doublet lens with a reflective coating on its convex back surface to produce the spectra on a flat detector. Spatial keystone distortion and spectral smile are controlled to less than one tenth of a pixel over the full wavelength range, facilitating the use of simple retrieval algorithms.
Abstract:
A spectrograph that includes a first mirror having flat a mirror reflective surface and positioned to reflect light traversing a prism, a second mirror having a concave-shaped reflective mirror surface and positioned to reflect light received from the first mirror, a third mirror having a convex-shaped reflective mirror surface and positioned to receive light reflected by the second mirror, a fourth mirror having a spheroidal reflective mirror surface and positioned to receive light reflected by the third mirror, and a field lens comprising a concave mirror surface in combination with a convex mirror surface, wherein light received by said field lens from said fourth mirror enters said convex mirror surface, traverses said field lens, and exits from said concave mirror surface. The fifth mirror is positioned such that the second mirror, third mirror, fourth mirror, and fifth mirror share a common vertex axis.
Abstract:
A system includes a first actuatable apparatus of an optical source, the first actuatable apparatus being altered within a range of values about a target value to thereby alter a spectral feature of the light beam; a second actuatable apparatus of the optical source, the second actuatable apparatus being altered to thereby alter the spectral feature of the light beam; a metrology system including an observation system configured to output an indication of a deviation between the actual value at which the first actuatable apparatus is operating and the target value; and a control system configured to determine whether the deviation is greater than an acceptable deviation, and, if it is greater than the acceptable deviation, then send a signal to a second actuation module controlling the second actuatable apparatus to adjust the actual value at which the first actuatable apparatus is operating to be closer to the target value.
Abstract:
A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target. The dispersing element is arranged between the illumination source and the digital micromirror array, the digital micromirror array is arranged to transmit the spectrum to the target and the optical device is arranged in the optical path after the target.
Abstract:
A spectroscopic sensor 1 comprises an interference filter unit 20, having a cavity layer 21 and mirror layers 22, 23 opposing each other through the layer 21, for selectively transmitting therethrough light in a predetermined wavelength range according to an incident position thereof; a light-transmitting substrate 3, arranged on the layer 22 side, for transmitting therethrough light incident on the unit 20; and a light-detecting substrate 4, arranged on the layer 23 side, for detecting the light transmitted through the unit 20. The layer 21 has a filter region 24 held between the layers 22, 23; an annular surrounding region 25 surrounding the region 24 with a predetermined distance therefrom; and an annular connecting region 26 connecting an end part 24e on the substrate 4 side of the region 24 and an end part 25e on the substrate 4 side of the region 25 to each other.
Abstract:
A spectroscopic analysis device based on Brillouin dynamic grating and its analysis method, which provides high resolution and large measuring range at the same time. The device includes a laser device (1), a fiber optic coupler device (2), a first fiber amplifier device (3), a first isolator (4), a first polarization controller (5), a second polarization controller (6), a single-sideband modulation modulator (7), a second fiber amplifier device (8), a second isolator (9), a third polarization controller (10), a single-mode fiber (11), a polarization beam splitter (12), a circulator (13), a photodetector (14), a data acquisition card (15), a fourth polarization controller (16) and a microwave source (17). The method utilizes the Brillouin scattering of two beams of pump light in optical fiber forming Brillouin dynamic gratings as the spectral element and achieve a sub-MHz resolution.
Abstract:
A spectrometer comprises a plurality of isolated optical channels comprising a plurality of isolated optical paths. The isolated optical paths decrease cross-talk among the optical paths and allow the spectrometer to have a decreased length with increased resolution. In many embodiments, the isolated optical paths comprise isolated parallel optical paths that allow the length of the device to be decreased substantially. In many embodiments, each isolated optical path extends from a filter of a filter array, through a lens of a lens array, through a channel of a support array, to a region of a sensor array. Each region of the sensor array comprises a plurality of sensor elements in which a location of the sensor element corresponds to the wavelength of light received based on an angle of light received at the location, the focal length of the lens and the central wavelength of the filter.
Abstract:
A method and apparatus are provided that interrogate, receive, and analyze full emission spectra for at least one fluorescence excitation wavelength and for at least one reflectance measurement to determine tissue characteristics and correlate same to photographic images. Further, the system and method accomplish this measurement rapidly by increasing the light throughput by integrating optics into a hand held unit and avoiding the need for a coherent fiber optic bundle being used. The method includes illuminating a first portion of a target tissue with optical energy, forming a first image of the target tissue, illuminating a second portion of the target tissue with optical energy, performing spectroscopic measurements on optical energy reflected and/or emitted by the target tissue upon illumination of the second portion of the target tissue with optical energy, and determining tissue characteristics of the target tissue based on the results of the spectroscopic measurements.