Abstract:
Methods, systems, and apparatuses for wireless communication are described. A user equipment (UE) may establish a dynamic coverage enhancement (CE) configuration and then autonomously transition from one CE level to another while in idle mode. The network may blindly detect the CE change during a paging procedure. For example, a mobility management entity (MME) may store dynamic CE information, and it may provide the dynamic CE information to base stations when the UE is paged. In some cases, the base stations may autonomously retransmit paging messages at different CE levels based on the dynamic CE information. In other examples, the MME may direct the base station to retransmit at different CE levels.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device transmits an indication of whether the device should be paged over a 3GPP access when a core network has data ready to transmit for PDU sessions over a non-3GPP access. A session management function (SMF) of the core network receives a data notification indicating that the core network has data ready to transmit to the wireless device for a PDU session over the non-3GPP access. The SMF determines whether to transmit a paging request to an access and mobility management function (AMF) of the core network based on a paging state of the SMG, a paging state of the wireless device, or a connection management idleness state of the wireless device. The AMF determines whether to transmit a paging message to the wireless device.
Abstract:
Techniques are described herein to communicate policy information and policy information requests between user equipments (UEs) and a core network using control plane signaling. In some examples, non-access stratum (NAS) messages may be used to communicate policy information requests from a UE to the core network. Similarly, NAS messages may be used to communicate up-to-date policy information from the core network to the UE. In some examples, the core network may include number of functions to manage the communication of policy information with the UE. In some examples where the UE is roaming away from its home network, the core network may engage in additional signaling to pass policy information to the UE.
Abstract:
Methods, systems, and devices for wireless communication are described. An access point (AP) may include a service discovery indicator in a broadcast message. A user equipment (UE) may tune to the radio frequency spectrum band of the AP and receive the broadcast message. The UE may identify a web resource based on the service discovery indicator and access the web resource to determine the capability configuration of the AP. The UE may access the web resource using an existing internet connection of its currently serving AP.
Abstract:
Techniques for aggregating heterogeneous carriers in a wireless communication system are disclosed. A mobile device may receive a configuration for aggregating a plurality of component carriers including one or more cellular carriers and a wireless local area network (WLAN) carrier. The one or more cellular carriers may include LTE carriers, and aggregation may be performed at a sub-IP protocol layer of operation. In one aspect, protocol entities may be modified to perform quality of service determinations, carrier selection, traffic mapping, or the like, in view of the different capabilities and characteristics of the heterogeneous carriers in the carrier aggregation configuration.
Abstract:
Methods, systems, and devices are described for facilitating Machine Type Communication in a wireless communications system. Link budget-limited MTC devices, may be supported. An MTC physical broadcast channel may be utilized for the Machine Type Communication. The MTC physical broadcast channel may be transmitted over one or more subframes different from a regular physical broadcast channel. The payload for the MTC physical broadcast channel may be reduced. The MTC physical broadcast channel may also be utilized to indicate the presence of paging and/or to indicate a change in system information. Some embodiments utilize one or more MTC-specific system information blocks. The MTC-specific system information blocks may combine and/or simplify multiple system information blocks. The location of the MTC system information blocks may be predetermined or information about their location may be transmitted over the MTC physical broadcast channel. An enhanced paging channel may be used to indicate system information updates.
Abstract:
Techniques are described for traffic volume determination and reporting by an access node and/or a node of a core network in a wireless communications system. One or more wireless connections may be established with a user equipment (UE) to serve one or more streams of traffic using a first cell and a second cell, which may have different cell characteristics. A first traffic volume for the UE may be determined based on traffic volume served over the first cell, and a second traffic volume for the UE may be determined based on traffic volume served over the second cell. A charging data record may be generated based on the first traffic volume and the second traffic volume. Traffic volume served over the first cell then may be charged at a different rate that traffic served over the second cell.
Abstract:
The state of an access link and backhaul link of a low power node may be determined and controlled after a low power node is initialized. The overhead signaling on the access link of a relay is controlled based on detecting a user equipment (UE). The connection on the backhaul link of the relay is managed in response to the overhead signaling on the access link.
Abstract:
Methods, systems, and devices are described for facilitating Machine Type Communication in a wireless communications system. Link budget-limited MTC devices, may be supported. An MTC physical broadcast channel may be utilized for the Machine Type Communication. The MTC physical broadcast channel may be transmitted over one or more subframes different from a regular physical broadcast channel. The payload for the MTC physical broadcast channel may be reduced. The MTC physical broadcast channel may also be utilized to indicate the presence of paging and/or to indicate a change in system information. Some embodiments utilize one or more MTC-specific system information blocks. The MTC-specific system information blocks may combine and/or simplify multiple system information blocks. The location of the MTC system information blocks may be predetermined or information about their location may be transmitted over the MTC physical broadcast channel. An enhanced paging channel may be used to indicate system information updates.
Abstract:
Techniques for aggregating heterogeneous carriers in a wireless communication system are disclosed. A mobile device may receive a configuration for aggregating a plurality of component carriers including one or more cellular carriers and a wireless local area network (WLAN) carrier. The one or more cellular carriers may include LTE carriers, and aggregation may be performed at a sub-IP protocol layer of operation. In one aspect, protocol entities may be modified to perform quality of service determinations, carrier selection, traffic mapping, or the like, in view of the different capabilities and characteristics of the heterogeneous carriers in the carrier aggregation configuration.