Abstract:
Apparatus and methods are provided for treating female urinary incontinence by applying a form of energy to tissue in the vicinity of the urethra and/or bladder outlet to change tissue compliance without substantially narrowing the urethral and/or bladder outlet lumen. The apparatus comprises an elongated shaft having a means for treating urethral tissue and an expandable member deployable distal of the means for treating. The expandable member is configured to be anchored against the bladder outlet to dispose the means for treating at a desired treatment site in the urethra using only tactile feedback. The means for treating may include a needleless RF electrode, an ultrasound transducer, or a cryogenic probe configured to be advanced through a hollow needle, each of which are designed to reduce or eliminate symptoms associated with urinary incontinence.
Abstract:
Minimally invasive apparatus and method for treating medical conditions of hollow organs. The treatment apparatus and method provide for delivery of energy from fluid sources of energy to the interior surface of the hollow organ in contact with the underlying glands, nerves, and muscle walls of the organ.
Abstract:
The invention comprises a method and apparatus for treatment of a body part. More particularly, a method and apparatus for heat treatment of tissue using a catheter inserted into a body part is described along with means for positioning the catheter and means for positioning a set of electrodes relative to a tissue sample for treatment. Still more particularly, radio frequency energy at about 400 to 500 kilohertz is used to provide heat for the tissue treatment.
Abstract:
Described herein are devices, systems and methods for treatment of tissue within a lumen of a body. For example, the devices described herein may be used to treat the urethra or gastrointestinal tract, including a sphincter. These devices may provide an expandable element at the distal end of an elongate body and may also include a plurality of electrodes (e.g., needle electrodes) configured to extend from the device and into the tissue to deliver energy to multiple, circumferentially arranged treatment sites. Sufficient energy may be delivered from the device to create a desired tissue effect.
Abstract:
A minimally invasive treatment and appartus for treating medical conditions of hollow organs is described. Electrodes positioned within the organ and in surface contact with the underlying glands, nerves, and muscle walls of the organ apply energy to specific glandular, nerve, or muscular areas to alter the organ's operation.
Abstract:
A method detects at a tissue site an electrical activity causing a transient relaxation of at least a portion of one of a sphincter, a lower esophageal sphincter, a stomach, a cardia or a fundus. The method treats the electrical activity at the tissue site by delivering electromagnetic energy to ablate at least a portion of one of the nerve, the gastric nerve, a nerve plexus, a myenteric nerve plexus, a ganglia, a nerve pathway or an electrically conductive pathway. The method conducts a cooling solution to the tissue site at a flow rate and adjusts the flow rate in response to sensed temperature conditions.
Abstract:
An apparatus includes an expandable member. The expandable member is sized to be positionable in a sphincter. An energy delivery device is positioned on a surface of the expandable member. The energy delivery device has a configuration that provides sufficient energy delivery to create lesions in the interior of the sphincter. When the expandable member is removed from the sphincter, the sphincter returns to its closed or contracted configuration.
Abstract:
Systems and methods deploy an electrode structure in contact with the tissue region. The electrode structure carries a sensor at a known location on the electrode structure to monitor an operating condition. The systems and methods provide an interface, which generate an idealized image of the electrode structure and an indicator image to represent the monitored operating condition in a spatial position on the idealized image corresponding to the location of the sensor on the electrode structure. The interface displays a view image comprising the idealized image and indicator image. The systems and methods cause the electrode structure to apply energy to heat the tissue region while the view image is displayed on the display screen.
Abstract:
A device for introducing a catheter into a vessel through a puncture in a vessel and for sealing the puncture. The device includes an elongated body having a proximal end and a distal end sized to be positioned within a tissue site which includes the puncture. The elongated body includes a utility lumen sized to allow a catheter to be delivered through the utility lumen. The utility lumen is positioned within the elongated body so positioning the elongated body within the tissue site allows a catheter delivered through the utility lumen to enter the vessel. The elongated body also includes a closure lumen having an entrance port. A closure composition can be delivered through the entrance port into the closure lumen. The closure lumen also includes an exit port adjacent the distal end of the elongated body. The closure composition delivered into the closure lumen can be delivered through the exit port to the tissue site adjacent the puncture.
Abstract:
The invention comprises a method and apparatus for treatment of a body part. More particularly, a method and apparatus for heat treatment of tissue using a catheter inserted into a body part is described along with means for positioning the catheter and means for positioning a set of electrodes relative to a tissue sample for treatment. Still more particularly, radio frequency energy at about 400 to 500 kilohertz is used to provide heat for the tissue treatment.