Abstract:
The invention relates to a pump (1) for conveying of a fluid from an intake region (2) to an outlet region (3) which has a housing (4) and at least one rotor (6) which is arranged rotatable around an axis of rotation (5) and which can be driven by a driving element. To obtain a high degree of efficiency the pump according to the invention is characterized in that the rotor (6) has a bore (7), that a piston element (8) is arranged in the bore which can move along the longitudinal axis (L) of the bore and that a plurality of magnets (9, 9′, 9″, . . . ) or a ring magnet is arranged stationary in the housing (4), wherein the magnets or the ring magnet exert a magnetic attractive force on the piston element (8), wherein the magnets (9, 9′, 9″, . . . ) or a ring magnet are arranged in such a manner in the housing (4) that the piston element (8) carries out an oscillating movement (O) in the bore (7) during rotation of the rotor (6) around the axis (5) due to the magnetic attractive force.
Abstract:
A thermosiphon system in an engine is provided herein. The thermosiphon system includes a coolant channel traversing a bearing housing, the bearing housing included in a bearing coupled to a shaft mechanically coupled to a turbine and a compressor in a turbocharger, a ventilation vessel in fluidic communication with at least one coolant passage traversing at least one of a cylinder head and a cylinder block in the engine, the at least one coolant passage included in a cooling circuit, and a thermosiphon coolant line having an inlet in fluidic communication with an outlet of the coolant channel and an inlet of the ventilation vessel, the inlet positioned vertically below an interface between liquid and vapor coolant in the ventilation vessel.
Abstract:
The invention is a piezoelectric self-cleaning apparatus, such as a chemical injection pump. The chemical injection pump is self-cleaning by employing either as an integral part or as an added part, a piezoelectric component that implosively cleans the pump head. This invention involves a liquid delivery system made of a liquid processing path and a piezoelectric actuator connected to or integral with said liquid processing path to enhance removal of unwanted solids from the liquid processing path or to maintain a blend, mix and/or integrity of a liquid chemical, wherein the liquid chemical does not precipitate particles, crystallize, separate or come out of solution.
Abstract:
A turbocharger arrangement in an internal combustion engine is provided. The turbocharger arrangement includes a turbocharger housing surrounding a sealed inner space and a shaft extending through the turbocharger housing. The turbocharger arrangement further includes a turbine wheel arranged on the shaft and driving a compressor unit, a bearing arrangement mounting the shaft in the turbocharger housing, an oil supply device lubricating the bearing arrangement, and a pressure changing unit in fluidic communication with the sealed inner space configured to adjust the pressure in the sealed inner space based on engine operating conditions.
Abstract:
A turbocharger for an internal combustion engine includes a shaft, a first turbine wheel, a compressor wheel, and a second turbine wheel. The shaft includes a first end and a second end and is supported for rotation about an axis. The first turbine wheel is mounted on the shaft proximate to the first end and configured to be rotated about the axis by post-combustion gasses emitted by the engine. The compressor wheel is mounted on the shaft between the first and second ends and configured to pressurize an airflow being received from the ambient for delivery to the engine. The second turbine wheel is mounted on the shaft proximate to the second end and configured to be rotated about the axis by a pressurized fluid. An internal combustion engine employing such a turbocharger is also disclosed.
Abstract:
A turbocharger assembly includes a center housing rotating assembly, which comprises a center housing, bearings housed in the center housing, a shaft rotatably supported in the bearings, and compressor and turbine wheels affixed to opposite ends of the shaft; an engine cylinder head and a housing member formed together as a one-piece integral structure, wherein the housing member defines a compressor volute that receives compressed air from the compressor wheel, a turbine volute for receiving exhaust gas from the engine, a turbine nozzle for directing exhaust gas from the turbine volute into the turbine wheel, and a turbine contour; a compressor contour plug that defines an axial inlet for the compressor and a compressor contour; and a wastegate unit operable for allowing exhaust gas to bypass the turbine wheel when the wastegate unit is open and preventing exhaust gas from bypassing the turbine wheel when the wastegate unit is closed.
Abstract:
A fluid pump includes a housing that defines a suction chamber, a discharge chamber, and a barrier having a first height, wherein the barrier is configured to separate the suction chamber from the discharge chamber. The pump also includes meshed first and second gears rotatably disposed in the housing. The gears are configured to draw relatively low-pressure fluid from the suction chamber, transform the relatively low-pressure fluid into relatively high-pressure fluid, and release the relatively high-pressure fluid into the discharge chamber. The barrier includes first and second portions configured to accept the first and second gears respectively, and a bridge connecting the first and second portions. The bridge is disposed proximately to where the gears mesh and is configured to provide a transition from the first height to a second height to thereby generate gradual re-expansion of the fluid away from the bridge.
Abstract:
An acoustofluidic apparatus is provided that functions by the generation of microstreaming in fluid produced by the oscillation of oscillatory elements excited by an energy input such as acoustic energy. An acoustofluidic apparatus includes an oscillatory energy field generator in energetic contact with one or more oscillatory elements contained in a fluid passage. Oscillation of the oscillatory elements induces microstreaming in a fluid that can be used to mix laminar flows of differing fluids, as a micropump for the directional movement of fluid through a fluid passage, for the generation of waveforms in a fluid or plurality of fluids or for other purposes.
Abstract:
A flow-conditioning system includes a pump, process tubing coupling the pump to a source of multiple component process fluid, and an in-line flow-mixing device positioned in the process tubing upstream of the pump. A system includes a well disposed below a body of water and providing a source of multiple component fluid, a pump disposed in and exposed to the water, process tubing coupling the pump to the well, and an in-line flow-mixing device positioned in the process tubing upstream of the pump.
Abstract:
A fan module includes a housing and at least one impeller. The housing includes first and second air channels. The housing further includes an axial air inlet in communication with the first air channel and a radial air inlet in communication with the second air channel. The housing further includes at least one radial air outlet in communication with the first and second air channels. The at least one impeller draws external air into the housing via the axial air inlet or the radial air inlet and expels air out of the housing via the at last one radial air outlet. By such an arrangement, external air can be guided into the fan module via different directions, providing an enhanced cooling effect.