Abstract:
An energy efficient general purpose injection molding employs a hydraulic drive for injection and clamp machine functions and an electric drive for screw recovery. Both drives use AC “squirrel cage” induction motors under vector control. Speed command signals for the vector controls are generated by the machine's controller utilizing state transition and predictive signal techniques to account for motor and motor/pump response latencies. Hydraulic drive efficiency is improved by varying motor speed/pump output to match cycle requirements to retain hydraulic drive advantages for mold clamp and injection functions while improving the electric drive performance for screw recovery.
Abstract:
There is provided an infection molding apparatus capable of preventing an occurrence of over-packing which is comprised of: a pair of dies for forming a plurality of cavities therebetween; die closing devices for closing the pair of dies under a prescribed pressure; an injection device for Injecting a molten resin into respective cavities under a prescribed pressure; and a control device for controlling the die closing devices and the Injection device, and further the apparatus comprises a plurality of pressure sensors for detecting respective pressures in respective cavities, wherein the control device controls the injection device and/or the die closing devices to reduce a rate of injection of the molten resin and/or a force of closing of the dies, otherwise to stop the injection and/or the die closing operation when a pressure difference between cavities is found to be greater than a prescribed value on the basis of sensed values from the respective pressure sensors.
Abstract:
A motor drive 50 of an induction motor IM includes an inverter section 20, a charger 60, a charging and discharging circuit 70 and a control section 80. The charger 60 is for storing regenerated electric power of the induction motor via the inverter section. The charging and discharging circuit 70 is for making the charger charge electric power and making the charger discharge the electric power. The control section carries out control of the charging and discharging circuit for making the charger charge the electric power when the induction motor generates regenerated electric power and making the charger supply the electric power to the induction motor in accelerating the induction motor or in electricity interruption.
Abstract:
Apparatus and method of monitoring an injection molding machine for molding a disc substrate, wherein a display device is controlled based on sensor outputs to display waveforms of operating parameters of the machine, including at least four parameters selected from among a speed and a pressure of injection of a material into a mold cavity, a mold clamping pressure, a backward movement amount of a movable mold half and a position of an injecting screw of the machine, such that each waveform represents a chronological change of a value of the corresponding parameter, and the display device is further controlled to indicate a point of time at which a sprue gate through which the material is injected into the mold cavity is closed, such that the point of time is indicated together with the displayed waveforms of the operating parameters displayed. Also disclosed is a computer-accessible recording medium storing a control program to be executed to practice the method.
Abstract:
An apparatus and method for detecting whether platens in a mold clamp remain parallel throughout an entire molding process. The apparatus includes a frame, a first platen having a surface orthogonal to a predetermined axis, a second platen having a surface opposing the first platen, the second platen being reciprocatable along the predetermined axis, actuating cylinders for reciprocating the second platen along the predetermined axis, and positions transducers for electromagnetically detecting the positions of a plurality of points on the surface of the second platen. The method includes the steps of emitting first and second electromagnetic interrogation pulses from a controller, transmitting the first pulse to a first transducer rod fixed relative to the first platen, and transmitting the second pulse to a second transducer rod fixed relative to the first platen and parallel to the first transducer rod, generating a first return signal when the first pulse reaches a magnet disposed adjacent to the first transducer rod and fixed relative to one end of the second platen, and generating a second return signal when the second pulse reaches a magnet disposed adjacent to the second transducer and fixed relative to an opposite end of the second platen, transmitting each of the first and second return signals to the controller, measuring the time elapsed between the emission of each pulse and the arrival of the corresponding return signal at the controller, and determining, based on the times elapsed, whether the opposing surfaces of the second platen and the first platen are substantially parallel.
Abstract:
A method and apparatus are provided for servo control of injection molding machine devices. A signal processor periodically produces analogue control signals for controlling machine mechanisms at a first loop closure interval and periodically produces digital control signals for controlling energization of machine heaters at a second loop closure interval. Values of analogue and digital control signals are determined according to control algorithms relating set point values and measured parameter values. Calculation of values of analogue control signals includes calculation of a first command value according to a first control algorithm, calculation of a second command value according to a second control algorithm and selection of the lesser of the first and second command values. Compensation for "cold" thermocouple junctions created at the connection of remote temperature sensing thermocouple leads and the signal processor interface circuits is provided. DC output interface circuits including two stage over-current protection are provided.
Abstract:
Peak pressure in a mold is sensed and if it is outside a predetermined range the part or parts being molded are separated from parts produced while the peak pressure is within the predetermined range.
Abstract:
A method is provided for controlling an injection molding system, which includes a mold having an inner surface defining at least two groups of cavities, each group of cavities defining precisely one cavity with one pressure sensor at the inner surface. Each group of cavities is at least partially surrounded by a tempering unit that provides an energy flow to the surrounded cavities. According to the method, a pressure is determined in each group of cavities of the at least two groups of cavities. A reference pressure is determined for each group of cavities. A difference between the reference pressure and the pressure in at least one group of cavities is determined and controlled to become minimum by manipulating the energy flow of the tempering unit.
Abstract:
A conveying device for conveying a viscous material from a container includes a follower plate that can be inserted into the container, and a pump by means of which the viscous material can be conveyed through the follower plate. Moreover, a measuring chamber for accommodation of a measuring sample of the viscous material is provided. The measuring chamber includes a closable material inlet opening for this purpose. A closable disposal line leads away from the measuring chamber. Moreover, a closable material return line extends from the measuring chamber via the follower plate into the container. The conveying device also includes a controller that is designed and can be operated appropriately such that it determines the compressibility of each of multiple measuring samples. The controller opens the disposal line or the material return line to the measuring sample present in the measuring chamber as a function of the compressibility thus determined.
Abstract:
A method of monitoring and controlling a molding clamping apparatus in an injection molding or other molding process is disclosed. The method includes creating a target strain profile, receiving a deviation limit, receiving a change in strain relating to a mold while it is closing from a first strain gauge, identifying a deviation from a target strain profile based on the output from the first strain gauge, determining that the deviation exceeds the deviation limit, and adjusting the rate or force of clamp movement. The target strain profile may have a first portion relating to a clamp closing process, a second portion relating to a filling process, and a third portion relating to a clamp opening process. The first portion relating to the clamp closing process may include an intermediate portion relating to a coining process having an intermediate clamp force setpoint.