Abstract:
By providing large area metal plates in combination with respective peripheral areas of increased adhesion characteristics, delamination events may be effectively monitored substantially without negatively affecting the overall performance of the semiconductor device during processing and operation. In some illustrative embodiments, dummy vias may be provided at the periphery of a large area metal plate, thereby allowing delamination in the central area while substantially avoiding a complete delamination of the metal plate. Consequently, valuable information with respect to mechanical characteristics of the metallization layer as well as process flow parameters may be efficiently monitored.
Abstract:
In a dual stress liner approach, the surface conditions after the patterning of a first stress-inducing layer may be enhanced by appropriately designing an etch sequence for substantially completely removing an etch stop material, which may be used for the patterning of the second stress-inducing dielectric material, while, in other cases, the etch stop material may be selectively formed after the patterning of the first stress-inducing dielectric material. Hence, the dual stress liner approach may be efficiently applied to semiconductor devices of the 45 nm technology and beyond.
Abstract:
By forming a first portion of a substrate contact in an SOI device on the basis of a trench capacitor process, the overall manufacturing process for patterning contact elements may be enhanced since the contacts may only have to extend down to the level of the semiconductor layer. Since the lower portion of the substrate contact may be formed concurrently with the fabrication of trench capacitors, complex patterning steps may be avoided which may otherwise have to be introduced when the substrate contacts are to be formed separately from contact elements connecting to the device level.
Abstract:
By selectively providing a buffer layer having an appropriate thickness, height differences occurring during the deposition of an SACVD silicon dioxide may be reduced during the formation of an interlayer dielectric stack of advanced semiconductor devices. The buffer material may be selectively provided after the deposition of contact etch stop layers of both types of internal stress or may be provided after the deposition of one type of dielectric material and may be used during the subsequent patterning of the other type of dielectric stop material as an efficient etch stop layer.
Abstract:
A manufacturing process of a semiconductor device includes generating a less random grain orientation distribution in metal features of a semiconductor device by employing a grain orientation layer. The less random grain orientation, e.g., a grain orientation distribution which has a higher percentage of grains that have a predetermined grain orientation, may lead to improved reliability of the metal features. The grain orientation layer may be deposited on the metal features wherein the desired grain structure of the metal features may be obtained by a subsequent annealing process, during which the metal feature is in contact with the grain orientation layer.
Abstract:
During the patterning of stressed layers having different types of intrinsic stress, the effects of the deposition of a silicon dioxide based etch indicator material between the first and second dielectric layers may be significantly reduced by a controlled etch on the basis of optical measurement data indicating the etch rate and, thus, the performance of the respective etch process. In other cases, highly efficient etch indicator species may be incorporated into the stressed dielectric layers or may be formed on a surface portion thereof with reduced layer thickness, thereby providing an enhanced endpoint detection signal without creating the negative effects of silicon dioxide based indicator layers. In one illustrative embodiment, a stressed silicon, nitrogen and carbon-containing layer may be combined with a stressed silicon and nitrogen-containing layer, wherein the carbon species provides a prominent endpoint detection signal.
Abstract:
By providing an additional silicon dioxide based etch stop layer, a corresponding etch process for forming contact openings for directly connecting polysilicon lines and active areas may be controlled in a highly reliable manner. In another aspect, the etch selectivity of the contact structure may be increased by a modification of the etch behavior of the exposed portion of the contact etch stop layer.
Abstract:
The present invention relates to plastic molded bodies having two-dimensional or three-dimensional image structures produced in the interior through laser subsurface engraving. The plastic molded bodies are made of plastic materials which have a content of nanoscale metal oxides having particle sizes from 1 to 500 nm, both the plastic material and also the included metal oxide being transparent to the laser light used for producing the image structures. The plastic materials from which the molded bodies are manufactured particularly contain metal oxides having particle sizes from 5 to 100 nm at a content of 0.0001 to 0.1 weight-percent. Typical metal oxides are nanoscale indium-tin oxide or antimony-tin oxide.
Abstract:
A graft copolymer is prepared by a process comprising: graft polymerizing a polyamide-forming monomer selected from the group consisting of lactams and &ohgr;-aminocarboxylic acids and an oligocarboxylic acid selected from the group consisting of from 0.015 to about 3 mol. % of dicarboxylic acid and from 0.01 to about 1.2 mol. % of tricarboxylic acid, in each case the stated amounts of oligocarboxylic acid based on a molar amount of lactam, &ohgr;-aminocarboxylic acid or combination thereof, onto from 0.5 to 25% by weight, based on the graft copolymer, of a polyamine having at least 11 nitrogen atoms and a number-average molecular weight Mn of at least 500 g/mol., wherein the amino group concentration in the graft copolymer ranges from 100 to 2500 mmol./kg.
Abstract:
A thermoplastic multilayer composite, and articles made therefrom, which has at least one layer I of a thermoplastic molding composition, at least one layer II of a further thermoplastic molding composition, bonded together with at least one layer of an adhesion promoter disposed between at least one layer I and at least one layer II. The adhesion promoter is at least 5% by weight of a graft copolymer prepared from 0.5 to 25% by weight, based on the total amount of graft copolymer, of a polyamine having at least 4 nitrogen atoms and having a number average molecular weight Mn of at least 146 g/mol, and polyamide-forming monomers selected from lactams, &ohgr;-aminocarboxylic acids, equimolar mixtures of diamines and dicarboxylic acids, and their mixtures.