Abstract:
Described is a method for controlling fluid volume balance. A controller is configured with a first set of inputs comprising a hematocrit, a total blood volume, and an ACD ratio. A maximum extracorporeal RBC amount during the procedure is estimated based on the first set of inputs. A fluid circuit is primed with a priming fluid. Whole blood is drawn from a blood source and separated into a RBC component, a target cell component, and a plasma component. The target cell component is directed to a product container. The product container comprising the target cell component is treated. A treated target cell component, a portion of the RBC component remaining in the fluid circuit, and/or a portion of the plasma component remaining in the fluid circuit are returned to the blood source. A first response action is provided if the maximum extracorporeal RBC amount estimated is above a programmed limit.
Abstract:
A method of collecting mononuclear cells, comprising separating whole blood into plasma and cellular components, combining the cellular components with plasma replacement fluid to form a first mixture, and separating the first mixture into mononuclear cells and at least one component.
Abstract:
Described is a method for controlling fluid volume balance. A controller is configured with a first set of inputs comprising a hematocrit, a total blood volume, and an ACD ratio. A maximum extracorporeal RBC amount during the procedure is estimated based on the first set of inputs. A fluid circuit is primed with a priming fluid. Whole blood is drawn from a blood source and separated into a RBC component, a target cell component, and a plasma component. The target cell component is directed to a product container. The product container comprising the target cell component is treated. A treated target cell component, a portion of the RBC component remaining in the fluid circuit, and/or a portion of the plasma component remaining in the fluid circuit are returned to the blood source. A first response action is provided if the maximum extracorporeal RBC amount estimated is above a programmed limit.
Abstract:
A blood treatment system comprising at least one first device and at least one second device, wherein the first device is a membrane filter for the removal of toxic mediators from blood and the second device is suitable for the removal of granulocytes and monocytes from blood. The first device has a first blood flow path a first blood flow path for conducting blood through and the second device has a second blood flow path. The first and second devices are serially connected in succession in such a way that the first blood flow path is in fluid communication with the second blood flow path.The membrane has an interior filter space in its housing and a semipermeable membrane arranged in the interior filter space, which membrane divides the interior filter space into a retentate chamber and permeate chamber. The housing has a blood inlet device and a blood outlet device that are in fluid communication with the retentate chamber, as well as a permeate outlet for diverting permeate from the permeate chamber. The blood inlet device, the retentate chamber and the blood outlet device form the first blood flow path. The membrane filter has a separation characteristic such that the sieve coefficient for albumin, SKAlb, is within the range from 0.015 to 0.35.
Abstract:
A system is provided for separating a plasma-containing fluid into separated plasma and a concentrated fluid. The system cooperates with a fluid flow circuit including a fluid separation chamber and a plasma outlet line associated therewith for removing separated plasma from the fluid separation chamber. The system includes an optical sensor assembly to monitor the contents of the plasma outlet line and produce an output indicative of the concentration of free plasma hemoglobin in the plasma outlet line. A controller of the system calculates the amount of free plasma hemoglobin in at least a portion of the concentrated fluid based at least in part on the output of the optical sensor assembly. The controller may periodically calibrate the optical sensor assembly by determining an instrument-specific correlation between optic output and free hemoglobin concentration and comparing it to experimentally determined data to ensure continued reliability of the optical sensor assembly.
Abstract:
A system is provided for separating a plasma-containing fluid into separated plasma and a concentrated fluid. The system cooperates with a fluid flow circuit including a fluid separation chamber and a plasma outlet line associated therewith for removing separated plasma from the fluid separation chamber. The system includes an optical sensor assembly to monitor the contents of the plasma outlet line and produce an output indicative of the concentration of free plasma hemoglobin in the plasma outlet line. A controller of the system calculates the amount of free plasma hemoglobin in at least a portion of the concentrated fluid based at least in part on the output of the optical sensor assembly. The controller may periodically calibrate the optical sensor assembly by determining an instrument-specific correlation between optic output and free hemoglobin concentration and comparing it to experimentally determined data to ensure continued reliability of the optical sensor assembly.
Abstract:
A device for processing a biological material is disclosed. The device includes a syringe barrel comprising beads, a filter positioned at a close end of the barrel, a plunger insertable into the barrel through an open end, and a needle. The plunger includes a paddle assembly that is configured to mix a biological material with the beads after the biological material has been harvested from a patient.
Abstract:
The instant invention pertains to improvements in processes and apparatus for stimulating, collecting, and optionally modifying, macrophages from the peritoneal cavity of a vertebrate.
Abstract:
A method provided for determining a range for the amount of light-energy attenuating material that may be present in a suspension containing target cells (such as MNCs), light-energy attenuating matter (such as RBCs and plasma), and a light-energy activatable compound (such as psoralen) so that a desired therapeutic effect (such as the percentage of MNCs in which apoptosis occurs) is obtained when the suspension is subjected to a known amount of light energy. In a related aspect, a method is provided for preparing a suspension containing target cells, light-energy attenuating matter, and a light-energy activatable compound so that a desired therapeutic effect is obtained when the suspension is subjected to a known amount of light energy.
Abstract:
A method of collecting mononuclear cells, comprising separating whole blood into cellular components and platelets suspended in plasma, separating the platelets suspended in plasma into platelet concentrate and platelet-poor plasma, combining the cellular components with the platelet-poor plasma to form a first mixture, and separating the first mixture into mononuclear cells and at least one component.