摘要:
Techniques are provided to improve long term data retention in a charge-trapping memory device. In addition to a primary charge-trapping layer in which most charges are stored, the memory device may include a tunneling layer comprising an engineered tunneling barrier such as oxide-nitride-oxide. The nitride in the tunneling layer may also store some charges after programming. After the programming, a data retention operation is performed which de-traps some electrons from the tunneling layer, in addition to injecting holes into the tunneling layer which form neutral electron-hole dipoles in place of electrons. These mechanisms tend to lower threshold voltage. Additionally, the data retention operation redistributes the electrons and the holes inside the charge-trapping layer, resulting in an increase in threshold voltage which roughly cancels out the decrease when the data retention operation is optimized.
摘要:
Read disturb is reduced for dummy memory cells in a charge-trapping memory device such as a 3D memory device. The memory device includes a selected NAND string and an unselected NAND string. In the unselected NAND string, a dummy memory cell is adjacent to a select gate transistor. During a read operation involving the selected NAND string, a voltage of the dummy memory cell is increased in two steps to minimize a gradient in a channel of the unselected NAND string between the dummy memory cell and the select gate transistor. During the first step, the select gate transistor is conductive so that the channel is connected to a driven bit line. During the second step, the select gate transistor is non-conductive. Voltages on unselected word lines can also be increased in two steps to set a desired channel boosting level in the unselected NAND string.
摘要:
A read operation compensates for program disturb when distinguishing between an erased-state and a lowest programmed data state, where the program disturb is a function of the data state of an adjacent, previously-programmed memory cell on a common charge-trapping layer. A programming operation avoids program disturb of the programmed data states by using asymmetric pass voltages. Before reading the memory cells on a selected word line (WLn), the memory cells on the adjacent, previously-programmed word line (WLn−1) are read. The read operation for WLn uses multiple read voltages—one for each data state on WLn−1, and one of the read results is selected based on the data state of the adjacent memory cell. Other read operations distinguish between each pair of adjacent programmed data states using a read voltage which is independent of the data state of the adjacent memory cell.
摘要:
Read disturb is reduced for dummy memory cells in a charge-trapping memory device such as a 3D memory device. The memory device includes a selected NAND string and an unselected NAND string. In the unselected NAND string, a dummy memory cell is adjacent to a select gate transistor. During a read operation involving the selected NAND string, a voltage of the dummy memory cell is increased in two steps to minimize a gradient in a channel of the unselected NAND string between the dummy memory cell and the select gate transistor. During the first step, the select gate transistor is conductive so that the channel is connected to a driven bit line. During the second step, the select gate transistor is non-conductive. Voltages on unselected word lines can also be increased in two steps to set a desired channel boosting level in the unselected NAND string.
摘要:
Read disturb is reduced for dummy memory cells in a charge-trapping memory device such as a 3D memory device. The memory device includes a selected NAND string and an unselected NAND string. In the unselected NAND string, a dummy memory cell is adjacent to a select gate transistor. During a read operation involving the selected NAND string, a voltage of the dummy memory cell is increased in two steps to minimize a gradient in a channel of the unselected NAND string between the dummy memory cell and the select gate transistor. During the first step, the select gate transistor is conductive so that the channel is connected to a driven bit line. During the second step, the select gate transistor is non-conductive. Voltages on unselected word lines can also be increased in two steps to set a desired channel boosting level in the unselected NAND string.
摘要:
Read disturb due to hot electron injection is reduced in a 3D memory device by controlling the magnitude and timing of word line and select gate ramp down voltages at the end of a sensing operation. In an example read operation, the magnitude of a selected word line voltage is increased to be equal to pass voltages of unselected word lines, and the selected and unselected word line are ramped down at the same time, to avoid creating a channel gradient. In an example verify operation, the above procedure can be followed when the selected word line is at a source-side or middle range among all word lines. When the selected word line is at a drain-side among all word lines, a source-side select gate can be ramped down before the selected word line and a drain-side select gate can be ramped down after the selected word line.
摘要:
Techniques are provided to improve long term data retention in a charge-trapping memory device. In addition to a primary charge-trapping layer in which most charges are stored, the memory device may include a tunneling layer comprising an engineered tunneling barrier such as oxide-nitride-oxide. The nitride in the tunneling layer may also store some charges after programming. After the programming, a data retention operation is performed which de-traps some electrons from the tunneling layer, in addition to injecting holes into the tunneling layer which form neutral electron-hole dipoles in place of electrons. These mechanisms tend to lower threshold voltage. Additionally, the data retention operation redistributes the electrons and the holes inside the charge-trapping layer, resulting in an increase in threshold voltage which roughly cancels out the decrease when the data retention operation is optimized.
摘要:
Techniques are provided for preventing program disturb of unselected memory cells during programming of a selected memory cell in a NAND string which includes a continuous charge-trapping layer, either in a two-dimensional or three-dimensional configuration. In such a NAND string, regions between the memory cells can be inadvertently programmed as parasitic cells due to the program voltage and pass voltages on the word lines. For programmed cells, an upshift in threshold voltage due to a parasitic cell can be avoided by providing a higher pass voltage on an adjacent later-programmed word line than on an adjacent previously-programmed word line. For erased cells, an upshift in threshold voltage due to the parasitic cells can be reduced by progressively lowering the pass voltage on the adjacent later-programmed word line. The lowering can occur when memory cells of a lowest target data state complete programming.
摘要:
A read operation compensates for program disturb when distinguishing between an erased-state and a lowest programmed data state, where the program disturb is a function of the data state of an adjacent, previously-programmed memory cell on a common charge-trapping layer. The read operation occurs in connection with a programming operation which avoids program disturb of the programmed data states by using asymmetric pass voltages. Before reading the memory cells on a selected word line (WLn), the memory cells on the adjacent, previously-programmed word line (WLn−1) are read. The read operation for WLn uses multiple read voltages—one for each data state on WLn−1, and one of the read results is selected based on the data state of the adjacent memory cell. Other read operations distinguish between each pair of adjacent programmed data states using a read voltage which is independent of the data state of the adjacent memory cell.
摘要:
Techniques are provided for programming memory cells while reducing the effects of detrapping which cause a downshift in the threshold voltage distribution. Detrapping is particularly problematic for charge-trapping memory cells such as in a 3D stacked non-volatile memory device. During programming, a temporary lockout mode is provided for memory cells which pass a verify test. During a checkpoint program-verify iteration, all memory cells of a target data state are subject to the verify test. The memory cells in the temporary lockout mode are therefore subject to the verify test a second time. Memory cells that fail the verify test in the checkpoint program-verify iteration are programmed further. A normal or slow programming mode is used for a memory cell depending on whether it had reached the temporary lockout mode. Threshold voltage distributions are narrowed by reprogramming some of the memory cells.