Abstract:
Semiconductor devices including a substrate (e.g., silicon substrate), a multi-layer structure disposed on a portion of the substrate, and at least one electrode disposed on the multi-layer structure and methods of manufacturing the same are provided. The multi-layer structure may include an active layer containing a Group III-V material and a current blocking layer disposed between the substrate and the active layer. The semiconductor device may further include a buffer layer disposed between the substrate and the active layer. In a case that the substrate is a p-type, the buffer layer may be an n-type material layer and the current blocking layer may be a p-type material layer. The current blocking layer may contain a Group III-V material. A mask layer having an opening may be disposed on the substrate so that the multi-layer structure may be disposed on the portion of the substrate exposed by the opening.
Abstract:
A memory device includes at least one memory configured to communicate with a memory controller; and a memory accelerator provided separate from the at least one memory and configured to communicate with the at least one memory, wherein the memory accelerator includes a compatible logic configured to perform a data processing/restoration operation adaptively corresponding to a data processing/restoration type of the memory controller.
Abstract:
A complementary metal oxide semiconductor (CMOS) device includes an n-type first transistor on a silicon substrate, the n-type first transistor including a Group III-V compound semiconductor substrate, and a p-type second transistor on the silicon substrate, the p-type second transistor including a germanium based substrate.
Abstract:
A semiconductor device including a group III-V barrier and a method of manufacturing the semiconductor device, the semiconductor device including: a substrate, insulation layers formed to be spaced apart on the substrate, a group III-V material layer for filling the space between the insulation layers and having a portion protruding higher than the insulation layers, a barrier layer for covering the side and upper surfaces of the protruding portion of the group III-V material layer and having a bandgap larger than that of the group III-V material layer, a gate insulation film for covering the surface of the barrier layer, a gate electrode formed on the gate insulation film, and source and drain electrodes formed apart from the gate electrode. The overall composition of the group III-V material layer is uniform. The barrier layer may include a group III-V material for forming a quantum well.
Abstract:
Provided are group III-V semiconductor transistors and methods of manufacturing the same. The method includes forming a group III-V semiconductor channel layer on a substrate, forming a gate insulating layer covering the group III-V semiconductor channel layer, and forming a protection layer including sulfur between the group III-V semiconductor channel layer and the gate insulating layer by annealing the substrate under a sulfur atmosphere.
Abstract:
Semiconductor devices including a substrate (e.g., silicon substrate), a multi-layer structure disposed on a portion of the substrate, and at least one electrode disposed on the multi-layer structure and methods of manufacturing the same are provided. The multi-layer structure may include an active layer containing a Group III-V material and a current blocking layer disposed between the substrate and the active layer. The semiconductor device may further include a buffer layer disposed between the substrate and the active layer. In a case that the substrate is a p-type, the buffer layer may be an n-type material layer and the current blocking layer may be a p-type material layer. The current blocking layer may contain a Group III-V material. A mask layer having an opening may be disposed on the substrate so that the multi-layer structure may be disposed on the portion of the substrate exposed by the opening.
Abstract:
Provided are a memory controller determining degradation in endurance, a memory system including the memory controller, and a method of operating the memory controller. The memory controller includes: an error correction code (ECC) circuit configured to detect an error from data read from a memory device; and an endurance determination circuit configured to check a first counting value indicating a number of writing operations on the memory device and a second counting value indicating, based on the data read from the memory device, at least one of: a number of first memory cells of the memory device, each of the first memory cells having an error and a number of second memory cells of the memory device in a certain logic state, and configured to perform a first determination operation for determining whether endurance of the memory device has degraded based on a checking result.
Abstract:
A substrate structure includes a substrate, a nucleation layer on the substrate and including a group III-V compound semiconductor material having a lattice constant that is different from that of the substrate by less than 1%, and a buffer layer on the nucleation layer and including first and second layers, wherein the first and second layers include group III-V compound semiconductor materials having lattice constants that are greater than that of the nucleation layer by 4% or more.
Abstract:
A light-emitting diode (LED) package includes a package substrate, a first electrode pad, a second electrode pad, an upper insulating layer and an LED chip. The first electrode pad is disposed on an upper surface of the package substrate and includes a groove. The second electrode pad includes a protruding portion disposed in the groove of the first electrode pad. The upper insulating layer insulates the first electrode pad from the second electrode pad on the package substrate. The LED chip includes a first electrode and a second electrode which are respectively electrically connected in the form of a flip-chip to the first electrode pad and the protruding portion of the second electrode pad.
Abstract:
A method of performing a write operation or a read operation in a memory system includes compressing data of a first size unit, generating a plurality of types of Error Checking and Correction (ECC) information based on the compressed data, combining the compressed data and the plurality of types of ECC information in units of a second size, and writing the information combined in units of the second size into a memory device.