Abstract:
A thin film transistor array panel is provided as follows. A gate electrode is disposed on a substrate. A semiconductor layer is disposed on the gate electrode. A gate insulating layer is disposed between the gate electrode and the semiconductor layer. A source electrode is disposed on a first side of the semiconductor layer, having a first lateral surface. A drain electrode is disposed on a second side of the semiconductor layer, having a second lateral surface. The first and second lateral surfaces define a spacing which overlaps the gate electrode. A metal suicide layer is disposed on the first and second lateral surfaces. A passivation layer is disposed on the metal silicide layer, the source electrode and the drain electrode. The passivation layer is not in contact with the first and second lateral surfaces.
Abstract:
A thin film transistor array panel includes: gate lines; data lines insulated from and crossing the gate lines; and shorting bars disposed outside of a display area in which the gate lines cross the data lines. The shorting bars overlap portions of the data lines disposed outside of the display area. The shorting bar includes a semiconductor material.
Abstract:
A thin film transistor array panel is provided as follows. A gate electrode is disposed on a substrate. A semiconductor layer is disposed on the gate electrode. A gate insulating layer is disposed between the gate electrode and the semiconductor layer. A source electrode is disposed on a first side of the semiconductor layer, having a first lateral surface. A drain electrode is disposed on a second side of the semiconductor layer, having a second lateral surface. The first and second lateral surfaces define a spacing which overlaps the gate electrode. A metal silicide layer is disposed on the first and second lateral surfaces. A passivation layer is disposed on the metal silicide layer, the source electrode and the drain electrode. The passivation layer is not in contact with the first and second lateral surfaces.
Abstract:
A thin film transistor array panel includes: a gate line disposed on a substrate and including a gate electrode, a semiconductor layer including an oxide semiconductor disposed on the substrate, and a data wire layer disposed on the substrate and including a data line intersecting the gate line, a source electrode connected to the data line, and a drain electrode facing the source electrode. In addition, at least one of the data line, the source electrode or the drain electrode of the data wire layer includes a barrier layer and a main wiring layer disposed on the barrier layer. The main wiring layer includes copper or a copper alloy. Also, the barrier layer includes a metal oxide, and the metal oxide includes zinc.
Abstract:
A passivation layer solution composition is provided. A passivation layer solution composition according to an exemplary embodiment of the present invention includes an organic siloxane resin represented by Chemical Formula 1 below. In Chemical Formula 1, R is at least one substituent selected from a saturated hydrocarbon or an unsaturated hydrocarbon having from 1 to about 25 carbon atoms, and x and y may each independently be from 1 to about 200, and wherein each wavy line indicates a bond to an H atom or to an x siloxane unit or a y siloxane unit, or a bond to an x siloxane unit or a y siloxane unit of another siloxane chain comprising x siloxane units or y siloxane units or a combination thereof.
Abstract:
A passivation layer solution composition is provided A passivation layer solution composition according to an exemplary embodiment of the present invention includes an organic siloxane resin represented by Chemical Formula 1 below. In Chemical Formula 1, R is at least one substituent selected from a saturated hydrocarbon or an unsaturated hydrocarbon having from 1 to about 25 carbon atoms, and x and y may each independently be from 1 to about 200, and wherein each wavy line indicates a bond to an H atom or to an x siloxane unit or a y siloxane unit, or a bond to an x siloxane unit or a y siloxane unit of another siloxane chain comprising x siloxane units or y siloxane units or a combination thereof.
Abstract:
The oxide of the present invention for thin-film transistors is an In—Zn—Sn-based oxide containing In, Zn, and Sn, wherein when the respective contents (atomic %) of metal elements contained in the In—Zn—Sn-based oxide are expressed by [Zn], [Sn], and [In], the In—Zn—Sn-based oxide fulfills the following expressions (2) and (4) when [In]/([In]+[Sn])≤0.5; or the following expressions (1), (3), and (4) when [In]/([In]+[Sn])>0.5. [In]/([In]+[Zn]+[Sn])≤0.3 (1), [In]/([In]+[Zn]+[Sn])≤1.4×{[Zn]/([Zn]+[Sn])}−0.5 (2), [Zn]/([In]+[Zn]+[Sn])≤0.83 (3), and 0.1≤[In]/([In]+[Zn]+[Sn]) (4). According to the present invention, oxide thin films for thin-film transistors can be obtained, which provide TFTs with excellent switching characteristics, and which have high sputtering rate in the sputtering and properly controlled etching rate in the wet etching.
Abstract:
A passivation layer solution composition is provided. A passivation layer solution composition according to an exemplary embodiment of the present invention includes an organic siloxane resin represented by Chemical Formula 1 below. In Chemical Formula 1, R is at least one substituent selected from a saturated hydrocarbon or an unsaturated hydrocarbon having from 1 to about 25 carbon atoms, and x and y may each independently be from 1 to about 200, and wherein each wavy line indicates a bond to an H atom or to an x siloxane unit or a y siloxane unit, or a bond to an x siloxane unit or a y siloxane unit of another siloxane chain comprising x siloxane units or y siloxane units or a combination thereof.
Abstract:
A thin film transistor array panel according to an exemplary embodiment of the present invention includes: a substrate; a gate line positioned on the substrate; a gate insulating layer positioned on the gate line; a semiconductor layer positioned on the gate insulating layer and having a channel portion; a data line including a source electrode and a drain electrode, the source and drain electrodes both positioned on the semiconductor layer; a passivation layer positioned on the data line and the drain electrode and having a contact hole formed therein; and a pixel electrode positioned on the passivation layer, wherein the pixel electrode contacts the drain electrode within the contact hole, and the channel portion of the semiconductor layer and the contact hole both overlap the gate line in a plan view of the substrate.
Abstract:
A thin film transistor array panel includes: a gate line disposed on a substrate and including a gate electrode, a semiconductor layer including an oxide semiconductor disposed on the substrate, and a data wire layer disposed on the substrate and including a data line intersecting the gate line, a source electrode connected to the data line, and a drain electrode facing the source electrode. In addition, at least one of the data line, the source electrode or the drain electrode of the data wire layer includes a barrier layer and a main wiring layer disposed on the barrier layer. The main wiring layer includes copper or a copper alloy. Also, the barrier layer includes a metal oxide, and the metal oxide includes zinc.