Abstract:
An integrated device that includes a substrate, an interconnect portion and an interconnect structure. The interconnect portion is located over the substrate. The interconnect portion includes a plurality of interconnects and at least one dielectric layer. The interconnect structure is located over the interconnect portion. The interconnect structure includes an inner interconnect, a dielectric layer coupled to the inner interconnect, and an outer conductive layer coupled to the dielectric layer. The outer conductive layer is configured to operate as a shield for the inner interconnect.
Abstract:
An integrated circuit (IC) module that includes an integrated circuit (IC) package, a plurality of first solder interconnects coupled to the IC package, an interposer coupled to the IC package through the plurality of first solder interconnects a plurality of second solder interconnects coupled to the interposer; and a printed circuit board (PCB) coupled to the interposer through the plurality of second solder interconnects. The interposer includes an encapsulation layer, a first passive component at least partially embedded in the encapsulation layer, and a plurality of interconnects coupled to the first passive component. The encapsulation layer includes a mold and/or an epoxy fill. The first passive component is configured to operate as an electronic voltage regulator (EVR) for the IC module. In some implementations, the interposer is a fan out interposer.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.
Abstract:
Circuits for die-to-die clock distribution are provided. A system includes a transmit clock tree on a first die and a receive clock tree on a second die. The transmit clock tree and the receive clock tree are the same, or very nearly the same, so that the insertion delay for a given bit on the transmit clock tree is the same as an insertion delay for a bit corresponding to the given bit on the receive clock tree. While there may be clock skew from bit-to-bit within the same clock tree, corresponding bits on the different die experience the same clock insertion delays.
Abstract:
A toroid inductor includes a plurality of first turns configured in a first ring shape and a plurality of second turns configured in a second ring shape. The plurality of first turns includes a plurality of first upper interconnects, a plurality of first lower interconnects, and a plurality of first vias coupled to the plurality of first upper interconnects and to the plurality of first lower interconnects. The plurality of second turns is at least partially intertwined with the plurality of first turns. The plurality of second turns includes a plurality of second upper interconnects, a plurality of second lower interconnects, and a plurality of second vias coupled to the plurality of second upper interconnects and to the plurality of second lower interconnects.
Abstract:
Some implementations provide a structure that includes a first package substrate, a first component, a second package substrate, a second component, and a third component. The first package substrate has a first area. The first component has a first height and is positioned on the first area. The second package substrate is coupled to the first package substrate. The second package substrate has second and third areas. The second area of the second package substrate vertically overlaps with the first area of the first package substrate The third area of the second package substrate is non-overlapping with the first area of the first package substrate. The second component has a second height and is positioned on the second area. The third component is positioned on the third area. The third component has a third height that is greater than each of the first and second heights.
Abstract:
Some implementations provide a structure that includes a first package substrate, a first component, a second package substrate, a second component, and a third component. The first package substrate has a first area. The first component has a first height and is positioned on the first area. The second package substrate is coupled to the first package substrate. The second package substrate has second and third areas. The second area of the second package substrate vertically overlaps with the first area of the first package substrate The third area of the second package substrate is non-overlapping with the first area of the first package substrate. The second component has a second height and is positioned on the second area. The third component is positioned on the third area. The third component has a third height that is greater than each of the first and second heights.
Abstract:
Multiple (multi-) die integrated circuit (IC) packages for supporting higher connection density, and related fabrication methods. The multi-die IC package includes split dies that provided in respective die packages that are stacked on top of each other to conserve package area. To support signal routing, including through-package signal routing that extends through the die package, each die package includes vertical interconnects disposed adjacent to their respective dies and coupled to a respective package substrate (and interposer substrate if provided) in the package substrate. In this manner, as an example, through-silicon-vias (TSVs) are not required to be fabricated in the multi-die IC package that extend through the dies themselves to provide signal routing between the respective die packages. In another example, space created between adjacent interposer substrates of stacked die packages, as stood off from each other through the interconnect bumps, provides an area for heat dissipation.
Abstract:
A semiconductor die (“die”) employing repurposed seed layer for forming additional signal paths to a back end-of-line (BEOL) structure of the die, and related integrated circuit (IC) packages and fabrication methods. A seed layer is repurposed that was disposed adjacent the BEOL interconnect structure to couple an under bump metallization (UBM) interconnect without a coupled interconnect bump thus forming an unraised interconnect bump, to a UBM interconnect that has a raised interconnect bump. To couple the unraised interconnect bump to the raised interconnect bump, the seed layer is selectively removed during fabrication to leave a portion of the seed layer repurposed that couples the UBM interconnect that does not have an interconnect bump to the UBM interconnect that has a raised interconnect bump. Additional routing paths can be provided between raised interconnect bumps to the BEOL interconnect structure through coupling of UBM interconnects to an unraised interconnect bump.
Abstract:
Some novel features pertain to an integrated device that includes a first metal layer and a second metal layer. The first metal layer includes a first set of regions. The first set of regions includes a first netlist structure for a power distribution network (PDN) of the integrated device. The second metal layer includes a second set of regions. The second set of regions includes a second netlist structure of the PDN of the integrated device. In some implementations, the second metal layer further includes a third set of regions comprising the first netlist structure for the PDN of the integrated device. In some implementations, the first metal layer includes a third set of regions that includes a third netlist structure for the PDN of the integrated device. The third set of regions is non-overlapping with the first set of regions of the first metal layer.