Abstract:
A display device using a semiconductor light emitting device and a method of fabricating the semiconductor light emitting device are disclosed. The display device includes a substrate, a plurality of first electrodes disposed on the substrate, an anisotropic conductive film disposed on the substrate provided with the first electrodes, a plurality of semiconductor light emitting devices disposed on the anisotropic conductive film layer, electrically connected to the first electrodes, and constituting individual pixels, and a plurality of second electrodes disposed between the semiconductor light emitting devices and electrically connected to the semiconductor light emitting devices. Thus, alignment of the semiconductor light emitting device array may be simplified by use of an anisotropic conductive film Due to excellent brightness, the semiconductor light emitting devices, which are small in size, may form individual sub-pixels. In addition, the distance between the semiconductor light emitting devices is sufficiently long to embody a flexible display device.
Abstract:
A display device including a substrate including a wiring electrode; a plurality of semiconductor light emitting devices electrically connected to the wiring electrode; and an intermediate electrode extending along one direction to be electrically connected to conductive electrodes of adjoining semiconductor light emitting devices, covering the conductive electrodes, and facing the wiring electrode to be electrically connected to the wiring electrode.
Abstract:
The present invention provides a display device using a semiconductor light-emitting element and a manufacturing method therefor, the display device transferring semiconductor light-emitting elements on a temporary substrate, and then directly implementing, through a stack process, the structure of a wiring substrate on the temporary substrate on which the semiconductor light-emitting elements are arrayed, thereby enabling the semiconductor light-emitting elements and the wiring substrate to be electrically connected.
Abstract:
A display device including a wiring substrate having a wiring electrode; a plurality of semiconductor light emitting devices which form pixels; and a conductive adhesive layer configured to electrically connect the wiring electrode with the plurality of semiconductor light emitting devices. Further, the conductive adhesive layer includes a body provided with a resin having an adhesive property; and a metallic aggregation part disposed in the body, and formed as metallic atoms precipitated from a metal-organic compound and aggregated with each other.
Abstract:
A semiconductor device includes an electrode including a plurality of pillars, a semiconductor element configured to be electrically-connected with the electrode, a substrate having electrode patterns, and a conductive adhesive layer located between the substrate and the electrode, the conductive adhesive layer including conductive substances configured to electrically-connect the pillars and the electrode patterns to each other, and including a body which encloses the conductive substances.
Abstract:
A display device using semiconductor light emitting devices is disclosed. The display device includes a substrate, a plurality of first electrodes disposed on the substrate, a light emitting device array comprising a plurality of semiconductor light emitting devices electrically connected to the first electrodes, constituting individual pixels, and having different brightnesses increasing from one side of a current input direction of each of the first electrodes to the other side of the current input direction, and a plurality of second electrodes electrically connected to the semiconductor light emitting devices. Thus, brightness variation caused by power loss may be reduced in a display device of PM type using light emitting device array, thereby reducing load effect that is a problem of the device of PM type using light emitting device array.
Abstract:
Discussed is a display apparatus and, more particularly, to a display apparatus using a semiconductor light emitting device. A display apparatus includes a substrate having a first wiring; a rib portion provided with a first rib and a second rib formed to protrude from one surface of the substrate, the first and second ribs disposed on opposite sides of the first wiring; a solderable metal filled between the first rib and the second rib, and formed to cover the first wiring; and a plurality of semiconductor light emitting devices sequentially arranged along the rib portion, at least part of the plurality of semiconductor light emitting devices are inserted into the solderable metal to be electrically connected to the first wiring.
Abstract:
The present disclosure relates to a display device, and more particularly, to a display device using a semiconductor light emitting device. Such a display device using a semiconductor light emitting device may include a first substrate comprising an electrode portion, a conductive adhesive layer located on the first substrate, and a plurality of semiconductor light emitting devices at least part of which are buried in an upper region of the conductive adhesive layer to constitute individual pixels electrically connected to the electrode portion.
Abstract:
A display device according to an embodiment of the present disclosure may include a lower substrate disposed with a line electrode at an upper portion thereof, a plurality of semiconductor light emitting devices electrically connected to the line electrode to generate light and disposed to be separated from one another, and an adhesive portion including a body configured to fix the location of the lower substrate to that of the semiconductor light emitting device, and a conductor dispersed within the body to electrically connect the lower substrate to the semiconductor light emitting device, wherein the plurality of semiconductor light emitting devices form one pixel region (P) having red, green and blue semiconductor light emitting devices that emit red, green and blue light, and contain a material selected from inorganic semiconductor materials, and the adhesive portion blocks light generated from the plurality of semiconductor light emitting devices.
Abstract:
Discussed is a display device using a semiconductor light emitting device. In a display device including a plurality of semiconductor light emitting devices, each of the plurality of semiconductor light emitting devices includes a first conductive semiconductor layer, a second conductive semiconductor layer overlapped with the first conductive semiconductor layer, an active layer disposed between the first conductive semiconductor layer and the second conductive semiconductor layer, a first electrode deposited on the first conductive semiconductor layer, and a second electrode deposited on the second conductive semiconductor layer, wherein the first electrode is extended toward an adjoining semiconductor light emitting device to be electrically connected to the adjoining semiconductor light emitting device.