Abstract:
Provided is a BrushLess Direct Current (BLDC) motor system including a motor driving circuit configured to control a pulse-width-modulation (PWM) inverter in a first operation mode or a second operation mode according to a control signal, and output a switching signal according to each operation mode, the PWM inverter configured to receive the switching signal to output first three-phase voltages having a first frequency in the first operation mode, and output second three-phase voltages having a second frequency in the second operation mode, a sensorless BLDC motor configured not to operate in the first operation mode by operating based on three-phase voltages having a frequency in a different band from the first frequency, and operate in the second mode by operating based on three-phase voltages having a frequency in an identical band to the second frequency, and a parameter detecting circuit configured to calculate parameter information on the sensorless BLDC motor in the first operation mode by using sensing voltages sensed in the PWM inverter.
Abstract:
The inventive concept provides a motor driving module, a operating method for the same, and a Brush less Direct Current (BLDC) motor system. The motor driving module is provided which comprises a motor driving unit configured to output a plurality of switching signals based on a plurality of position signals and a control signal; and a Pulse Width Modulation (PWM) inverter configured to output 3-phase voltages based on the plurality of switching signals outputted from the motor driving unit, wherein the motor driving unit comprises; a correction circuit configured to detect an error of the plurality of position signals to output a compensation signal based on the detecting result; and a control circuit configured to output the plurality of switching signals based on the compensation signal and the control signal, wherein the plurality of position signals indicate a position of a rotor in an external motor.
Abstract:
Disclosed is a spherical wheel motor including: a spherical rotor having freedom of rotation along surrounding magnetized directions; a stator formed in a dome shape enclosing the rotor and configured to form magnetization at various angles through a plurality of coils distributed therein, and impart the freedom of rotation to the rotor; and a driving unit configured to identify a position of the rotor, supply current to each coil of the stator according to the position of the rotor, and drive the rotor.
Abstract:
A motor driving module is provided which includes a motor driving unit configured to control a PWM inverter on the basis of positional information and a control signal; a PWM inverter configured to output three-phase voltages on the basis of DC power according to control of the motor driving unit; a phase voltage estimating unit configured to output three-phase estimated voltages on the basis of the positional information, the DC power, and a voltage modulation index; and a position detecting unit configured to output the positional information on the basis of the three-phase estimated voltages, wherein the positional information is on an external motor that operates on the basis of the three-phase voltages.
Abstract:
Provided is a motor including a motor driving unit outputting a plurality of switching signals and any one of estimated three-phase voltages, in response to a control signal and a compensated position signal; a pulse width modulation (PWM) inverter outputting three-phase voltages and any one of estimated three-phase currents corresponding to the one estimated phase voltage, in response to the plurality switching signals; a motor unit operating based on the three-phase voltages and outputting a position signal according to the operation; and a position signal compensation unit receiving the position signal, the estimated phase voltage and the estimated phase current, detecting a phase difference between the estimated phase voltage and the estimated phase current and compensating for the position signal in response to the detected phase difference.
Abstract:
The inventive concept provides a motor driving module, a operating method for the same, and a Brush less Direct Current (BLDC) motor system. The motor driving module is provided which comprises a motor driving unit configured to output a plurality of switching signals based on a plurality of position signals and a control signal; and a Pulse Width Modulation (PWM) inverter configured to output 3-phase voltages based on the plurality of switching signals outputted from the motor driving unit, wherein the motor driving unit comprises; a correction circuit configured to detect an error of the plurality of position signals to output a compensation signal based on the detecting result; and a control circuit configured to output the plurality of switching signals based on the compensation signal and the control signal, wherein the plurality of position signals indicate a position of a rotor in an external motor.
Abstract:
A delay time control circuit is provided which includes a delay locked loop generating a second clock signal delayed by a predetermined time in response to a first clock signal; a plurality of delay circuits each receiving the first and second clock signals and outputting third and fourth clock signals in response to first and second digital clock signals; and a feedback control unit receiving the third and fourth clock signals to detect a delay time and generating the first and second digital control signals for compensating the detected delay time.
Abstract:
The present disclosure relates to a spherical wheel motor and a control system thereof, and more particularly, the spherical wheel motor and the control system include a spherical rotor and a stator surrounding an upper surface of the rotor. The rotor includes a spherical outer shell part, a first axial magnet extending in a horizontal direction in the outer shell part, a second axial magnet extending in the horizontal direction and facing the first axial magnet, and a rotary magnet belt provided in a form of a belt with the first axial magnet and the second axial magnet as a central axis. The rotary magnet belt includes a plurality of first rotary magnets and a plurality of second rotary magnets arranged alternately.
Abstract:
Provided is a bridge diode according to an embodiment of the inventive concept. The bridge diode includes a first structure including a first lower nitride film and a first upper nitride film, which are laminated on the substrate, a second structure including a second lower nitride film and a second upper nitride film, which are laminated on the substrate, a first electrode structural body disposed on the first structure, and a second electrode structural body disposed on the second structure. The first electrode structural body includes a first electrode, a second electrode, and a third electrode, which are arranged in a clockwise direction, the second electrode structural body includes a fourth electrode, a fifth electrode, and a sixth electrode, which are arranged in a clockwise direction, the first electrode and the sixth electrode, which are connected to each other, are connected to an external circuit, the third electrode and the fourth electrode, which are connected to each other, are connected to an external circuit, and each of the second electrode and the fifth electrode is connected to the external circuit.
Abstract:
Provided is a stabilizing circuit structure using a sense field effect transistor (sense-FET). A power semiconductor module includes a depletion-mode field effect transistor (D-mode FET) and the sense FET that has same structure as the D-mode FET and varies in area. Also the power semiconductor module includes not only an enhancement-mode field effect transistor (E-mode FET), but also the stabilizing circuit including circuit elements such as a resistor, a capacitor, an inductor, or a diode.