Abstract:
Native oxides and associated residue are removed from surfaces of a substrate by sequentially performing two plasma cleaning processes on the substrate in a single processing chamber. The first plasma cleaning process removes native oxide formed on a substrate surface by generating a cleaning plasma from a mixture of ammonia (NH3) and nitrogen trifluoride (NF3) gases, condensing products of the cleaning plasma on the native oxide to form a thin film that contains ammonium hexafluorosilicate ((NH4)2SiF6), and subliming the thin film off of the substrate surface. The second plasma cleaning process removes remaining residues of the thin film by generating a second cleaning plasma from nitrogen trifluoride gas. Products of the second cleaning plasma react with a few angstroms of the bare silicon present on the surface, forming silicon tetrafluoride (SiF4) and lifting off residues of the thin film.
Abstract:
Native oxides and residue are removed from surfaces of a substrate by performing a hydrogen remote plasma process on the substrate. In one embodiment, the method for removing native oxides from a substrate includes transferring a substrate containing native oxide disposed on a material layer into a processing chamber, wherein the material layer includes a Ge containing layer or a III-V compound containing layer, supplying a gas mixture including a hydrogen containing gas from a remote plasma source into the processing chamber, and activating the native oxide by the hydrogen containing gas to remove the oxide layer from the substrate.
Abstract:
Methods for selectively depositing a metal silicide layer are provided herein. In some embodiments, a method of selectively depositing a metal silicide layer includes: (a) providing a substrate having a first layer to a process chamber, wherein the first layer comprises a first surface and a feature formed in the first surface comprising an opening defined by one or more sidewalls and a bottom surface wherein the sidewalls comprise one of silicon oxide or silicon nitride and wherein the bottom surface comprises at least one of silicon or germanium; (b) exposing the substrate to a precursor gas comprising a metal halide; (c) purging the precursor gas from the process chamber using an inert gas; (d) exposing the substrate to a silicon containing gas; (e) purging the silicon containing gas from the process chamber using an inert gas; (f) repeating (b)-(e) to selectively deposit a metal silicide along the bottom surface to a predetermined thickness; and (g) annealing the substrate after depositing the metal silicide layer.
Abstract:
Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
Abstract:
Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
Abstract:
Methods for depositing a contact metal layer in contact structures of a semiconductor device are provided. In one embodiment, a method for depositing a contact metal layer for forming a contact structure in a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a contact metal layer on a substrate and annealing the contact metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the contact metal layer on the substrate, exposing the portion of the contact metal layer to a plasma treatment process, and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the contact metal layer to a plasma treatment process until a predetermined thickness of the contact metal layer is achieved.
Abstract:
The present disclosure generally relates to methods for removing contaminants and native oxides from substrate surfaces. The method includes exposing a surface of the substrate to first hydrogen radical species, wherein the substrate is silicon germanium having a concentration of germanium above about 30%, then exposing the surface of the substrate to a plasma formed from a fluorine-containing precursor and a hydrogen-containing precursor, and then exposing the surface of the substrate to second hydrogen radical species.
Abstract:
Methods for depositing a metal layer in a feature definition of a semiconductor device are provided. In one implementation, a method for depositing a metal layer for forming a semiconductor device is provided. The method comprises performing a cyclic metal deposition process to deposit a metal layer on a substrate and annealing the metal layer disposed on the substrate. The cyclic metal deposition process comprises exposing the substrate to a deposition precursor gas mixture to deposit a portion of the metal layer on the substrate, exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process and repeating the exposing the substrate to a deposition precursor gas mixture and exposing the portion of the metal layer to either a plasma treatment process or hydrogen annealing process until a predetermined thickness of the metal layer is achieved.
Abstract:
The present disclosure generally relates to methods for removing contaminants and native oxides from substrate surfaces. The method includes exposing a surface of the substrate to first hydrogen radical species, wherein the substrate is silicon germanium having a concentration of germanium above about 30%, then exposing the surface of the substrate to a plasma formed from a fluorine-containing precursor and a hydrogen-containing precursor, and then exposing the surface of the substrate to second hydrogen radical species.
Abstract:
Implementations described herein generally relate to methods and apparatus for in-situ removal of unwanted deposition buildup from one or more interior surfaces of a semiconductor substrate processing chamber. In one implementation, a method for removing cobalt or cobalt containing deposits from one or more interior surfaces of a substrate processing chamber after processing a substrate disposed in the substrate processing chamber is provided. The method comprises forming a reactive species from the fluorine containing cleaning gas mixture, permitting the reactive species to react with the cobalt and/or the cobalt containing deposits to form cobalt fluoride in a gaseous state and purging the cobalt fluoride in gaseous state out of the substrate processing chamber.