一种基于多维度仿真模拟的连铸坯质量预测方法

    公开(公告)号:CN116911005A

    公开(公告)日:2023-10-20

    申请号:CN202310825096.4

    申请日:2023-07-06

    Abstract: 本发明涉及一种基于多维度仿真模拟的连铸坯质量预测方法,针对连铸过程进行多物理场耦合数值仿真,得到连铸坯从结晶器弯月面到凝固末端的铸坯中心的温度变化曲线以及连铸坯从表面到芯部的固相率变化曲线;将得到的曲线拟合为“温‑凝模型”;对凝固单元进行凝固组织和溶质元素偏析的实验表征;筛选得到具有最高芯部等轴晶率或者最低溶质元素偏析程度的连铸条件作为最优的连铸工艺。本发明基于多维度、多方式的仿真方式,相互配合,互相验证,最终得到精准的铸坯芯部温度变化及铸坯表面到芯部的凝固曲线,再通过该模型进行相应的仿真模拟即可实现对某一连铸条件下铸坯质量的精准预测,提高铸坯质量预测精度及生产效率。

    一种多元化冶金过程物理模拟系统及试验方法

    公开(公告)号:CN114923946B

    公开(公告)日:2025-03-18

    申请号:CN202210684130.6

    申请日:2022-06-17

    Abstract: 本发明提供一种多元化冶金过程物理模拟系统及试验方法,系统包括真空子系统、循环冷却子系统、装料子系统、加热子系统、数据采集与处理子系统、供电子系统及样品台。加热子系统包括加热体,样品台放置在加热炉壳体内部,加热体空间布置方式及加热炉壳体的几何形状不影响从真空室壳体顶部和与样品台平行平面内相互垂直两个方向观察样品台上放置的试验样品;通过位于真空室壳体多个方向的CCD相机,通过观察窗对试验样品进行各个角度的形貌观察,实现三维方向同时对试验过程中样品的观察。覆盖多个冶金流程,实现对生产过程的综合试验模拟,具备研究过程立体可视化与数据实时采集功能,是功能更加完整、技术更为先进的冶金过程研究系统。

    一种转炉末期高温过氧化条件下的脱磷方法

    公开(公告)号:CN117867219A

    公开(公告)日:2024-04-12

    申请号:CN202311779130.5

    申请日:2023-12-22

    Abstract: 本发明涉及一种转炉末期高温过氧化条件下的脱磷方法,当转炉出钢温度为1680~1700℃(不包括1700℃)时,从高位料仓往转炉内加入菱镁石和铁碳球,菱镁石的加入量为6~8kg/t钢,铁碳球的加入量为9~11kg/t钢,加入后摇炉5~10次;再次测温,当转炉出钢温度为1680~1700℃时,往转炉内加入铁碳球,铁碳球的加入量为1~3kg/t钢,根据钢种种类选择沸腾出钢或镇静出钢,出钢后往钢包内加入盖罐白灰,盖罐白灰的加入量为2~3kg/t钢。本发明的优点是:用于转炉后期高温过氧化条件下的脱磷,在转炉终点高温过氧化时,采用加入菱镁石和铁碳球后摇炉,不仅利用了二者物料的物理温降,而且铁碳球的较高的碳含量与氧化铁反应形成CO气体持续带走热量,最终满足了脱磷,又实现了温降。

    1500MPa级别高强高耐蚀马氏体不锈钢热冲压工艺

    公开(公告)号:CN119819830A

    公开(公告)日:2025-04-15

    申请号:CN202510171527.9

    申请日:2025-02-17

    Abstract: 本发明涉及一种1500MPa级别高强高耐蚀马氏体不锈钢热冲压工艺,针对热轧工艺生产的不锈钢钢板:加热温度为870~925℃,到温后保温15~20min;或加热温度为930~1050℃,到温后保温3~5min;冷却速率≥0.1℃/s,待钢板的温度达到720~870℃时,进行合模,压力≥20MPa;合模后冷却速率≥0.1℃/s;温度≤180℃时开模;针对冷轧工艺生产的不锈钢钢板:加热温度为890~945℃,保温15~20min;或加热温度为950~1100℃,保温3~5min;冷却速率≥0.1℃/s,温度达到720~870℃时,进行合模,压力≥20MPa;合模后冷却速率≥0.1℃/s;温度≤180℃时开模。本发明通过热冲压工艺技术控制Cr的碳化物、氮化物以及微合金元素的析出,进行Cr23C6、Cr2N、(Nb、V)(C、N)等相组成及析出相微观组织调控。

    一种确定压下工艺对中心偏析定量影响的数值方法

    公开(公告)号:CN119089747A

    公开(公告)日:2024-12-06

    申请号:CN202411224116.3

    申请日:2024-09-03

    Abstract: 本发明涉及一种确定压下工艺对中心偏析定量影响的数值方法,通过模型Ⅰ,模拟获得铸坯温度场、溶质分布及中心偏析指数,将温度场作为热载荷,经模型Ⅱ,仿真得到芯部钢液体积变化量;基于溶质分布和芯部钢液体积变化量计算压下结束时铸坯溶质含量,再将压下结束时铸坯溶质含量作为入口边界,进行局部流动、凝固传热和传质耦合即为模型Ⅲ,模拟获得铸坯完全凝固时中心偏析指数与压下前后偏析变化量。本发明优点是:通过流动、凝固传热与传质多场耦合数学模型和热‑力耦合有限元数学模型相结合,实现数值仿真计算实施轻/重压下后连铸坯中心偏析指数,有助于定量评价压下工艺对中心偏析的改善效果,为压下工艺参数的优化提供技术支撑。

Patent Agency Ranking