-
公开(公告)号:CN117172046A
公开(公告)日:2023-12-05
申请号:CN202310881361.0
申请日:2023-07-18
申请人: 西南交通大学 , 中铁第四勘察设计院集团有限公司
IPC分类号: G06F30/23 , G06F30/13 , G06Q50/08 , G06F119/14
摘要: 本发明公开了一种基于过程建造的高铁组合梁斜拉桥试验模型设计方法,涉及斜拉桥技术领域,解决了现有组合梁模型不能合理反应桥梁整个施工过程中的结构应力变化及桥梁施工阶段的最不利时刻的问题。本发明包括:建立桥整体有限元模型并从其中确定最不利受力截面;基于最不利受力截面建立局部梁段有限元模型并将其静力计算结果与主桥整体有限元模型比较;确定几何相似比,得到局部梁段缩尺试验模型的相似设计;基于相似设计建立局部梁段缩尺试验有限元模型并验证其与局部梁段有限元模型静力计算结果的等效性;通过局部截面缩尺实验模型过程建造来模拟全桥施工阶段。本发明采用受力等效建立模型,模拟全桥施工阶段,研究建造过程中各个阶段的传力机理。
-
公开(公告)号:CN114164775A
公开(公告)日:2022-03-11
申请号:CN202111632932.4
申请日:2021-12-28
申请人: 四川交大工程检测咨询有限公司 , 中铁二院工程集团有限责任公司 , 西南交通大学
摘要: 本发明涉及桥梁轨道复旧方法技术领域,具体公开了一种基于桥梁轨道消缺顶升工艺的精调复旧方法。步骤1,施工准备;步骤2,梁体顶升;步骤3,病害复旧;步骤4,纠偏精调;步骤5,校核恢复。于震后桥梁病害的特殊性,传统的复旧方法不适用于震后桥梁病害,并且多点位的顶升千斤顶精度得不到有效保证,本发明通过模糊PID控制器结合模糊算法能够严格精确控制顶升量,实现梁体的同步精确顶升。本发明基于顶升装置系统的纠偏精调能够实现对桥梁震后病害进行修复的问题,并且修复材料的针对性强,修复时间快,养护时间短,恢复4‑5小时后便能够恢复通车。
-
公开(公告)号:CN104933285B
公开(公告)日:2017-08-29
申请号:CN201510096558.9
申请日:2015-03-05
申请人: 西南交通大学
IPC分类号: G06F19/00
摘要: 本发明涉及一种桥梁现场静载试验评定方法,其主要是一种通过现场静载试验来评定桥梁承载能力及适用性能的方法;包括如下步骤:(1)确定收集相关资料前期准备工作具体内容与方法;(2)根据收集来的资料,建立合理准确的桥梁结构有限元模型;(3)根据恒、活载下桥梁内力及应力计算分析结果,明确桥梁的理论受力安全性及活载受力特点;(4)结合桥梁传统的关键截面,确定桥梁试验截面,完成静载试验方案设计;(5)桥梁现场静载试验并处理数据(6)研究设定试验评定指标对应的评定区间;(7)对桥梁结构性能做出合理全面评价。本发明评定方法与指标能够更有效并细化指示出桥梁的实际承载能力及适用性,提高评定结果的合理性与准确性。
-
公开(公告)号:CN118345689A
公开(公告)日:2024-07-16
申请号:CN202410633624.0
申请日:2024-05-21
申请人: 中铁第四勘察设计院集团有限公司 , 西南交通大学
IPC分类号: E01D11/04 , E01D19/00 , E01D19/12 , E01D19/16 , E01D2/04 , E01D21/00 , E01D101/24 , E01D101/26 , E01D101/30
摘要: 本发明公开了一种钢混组合跨海高速铁路斜拉桥及其施工方法,涉及斜拉桥技术领域,解决了现有斜拉桥造价高,结构耐久度不足,后期维护工作量大的问题。本发明包括边墩、索塔及架设在边墩和索塔上的主梁,主梁包括槽形钢箱梁和混凝土桥面板,槽形钢箱梁采用单箱三室等高截面,包括底板、两个边纵腹板、两个中纵腹板、两个索梁锚拉板及横隔板,索梁锚拉板通过拉索与索塔连接,横隔板沿桥向间隔设置在中纵腹板和边纵腹板之间,中纵腹板、边纵腹板及横隔板的上翼缘组成顶板,靠近拉索处顶板与混凝土桥面板结合,远离拉索处顶板不与混凝土桥面板结合。本发明有效利用了组合梁的技术优势提供了一种具有良好的力学性能、经济性能及施工性能的斜拉桥。
-
公开(公告)号:CN117172046B
公开(公告)日:2024-05-07
申请号:CN202310881361.0
申请日:2023-07-18
申请人: 西南交通大学 , 中铁第四勘察设计院集团有限公司
IPC分类号: G06F30/23 , G06F30/13 , G06Q50/08 , G06F119/14
摘要: 本发明公开了一种基于过程建造的高铁组合梁斜拉桥试验模型设计方法,涉及斜拉桥技术领域,解决了现有组合梁模型不能合理反应桥梁整个施工过程中的结构应力变化及桥梁施工阶段的最不利时刻的问题。本发明包括:建立桥整体有限元模型并从其中确定最不利受力截面;基于最不利受力截面建立局部梁段有限元模型并将其静力计算结果与主桥整体有限元模型比较;确定几何相似比,得到局部梁段缩尺试验模型的相似设计;基于相似设计建立局部梁段缩尺试验有限元模型并验证其与局部梁段有限元模型静力计算结果的等效性;通过局部截面缩尺实验模型过程建造来模拟全桥施工阶段。本发明采用受力等效建立模型,模拟全桥施工阶段,研究建造过程中各个阶段的传力机理。
-
公开(公告)号:CN111335168B
公开(公告)日:2020-12-22
申请号:CN202010159264.7
申请日:2020-03-09
申请人: 西南交通大学
摘要: 本发明公开了一种千米级混合梁斜拉桥合龙方法,其包括根据单侧推移量确定千米级混合梁斜拉桥的两侧主梁的顶推方向;使合龙口两侧线形符合基准模型中合龙口两侧线形;使合龙口实际长度等于合龙口基准长度后锁定合龙口并撤除顶推;吊装合龙段梁后将第一设定拉索的无应力长度调整至基准值,合龙段梁的长度为合龙口基准长度;计算成桥后主跨钢结构线形相对误差、桥轴线相对误差、塔偏相对误差和索力误差;判断误差是否满足对应设定误差,若是,合龙完成,否则,调整直至所有误差满足对应设定误差;设定主跨钢结构线形相对误差为L/4000、设定桥轴线相对误差为L/40000、塔偏相对误差为L/10000,L为主跨长度。
-
公开(公告)号:CN111335168A
公开(公告)日:2020-06-26
申请号:CN202010159264.7
申请日:2020-03-09
申请人: 西南交通大学
摘要: 本发明公开了一种千米级混合梁斜拉桥合龙方法,其包括根据单侧推移量确定千米级混合梁斜拉桥的两侧主梁的顶推方向;使合龙口两侧线形符合基准模型中合龙口两侧线形;使合龙口实际长度等于合龙口基准长度后锁定合龙口并撤除顶推;吊装合龙段梁后将第一设定拉索的无应力长度调整至基准值,合龙段梁的长度为合龙口基准长度;计算成桥后主跨钢结构线形相对误差、桥轴线相对误差、塔偏相对误差和索力误差;判断误差是否满足对应设定误差,若是,合龙完成,否则,调整直至所有误差满足对应设定误差;设定主跨钢结构线形相对误差为L/4000、设定桥轴线相对误差为L/40000、塔偏相对误差为L/10000,L为主跨长度。
-
公开(公告)号:CN108020139A
公开(公告)日:2018-05-11
申请号:CN201810066872.6
申请日:2018-01-24
申请人: 西南交通大学
IPC分类号: G01B5/02
CPC分类号: G01B5/02
摘要: 一种桥梁检测领域铰缝位移测量装置,用作顶压在铰缝一侧左梁体底面上的触头固定在测量杆上端,测量杆自由移动地置于固定尺的滑槽内,压缩弹簧设置在测量杆下端与固定尺之间,且测量杆下端安装有指针;圆杆由横杆和竖杆连接组成;横杆左端固联在固定尺上,横杆右端与竖杆下端相连接,且长度调节器连接在横杆上,竖杆上端顺次连接转向调节器以及用作顶压在铰缝另一侧右梁体底面上的底座。本装置易于操作,简单可行,测量误差小,具有较高的精确度,可以准确、快速的测量出梁桥铰缝间的位移。本装置对优化测量梁桥铰缝位移具有重大意义。
-
公开(公告)号:CN104594209B
公开(公告)日:2016-06-15
申请号:CN201410801877.0
申请日:2014-12-22
申请人: 西南交通大学
IPC分类号: E01D22/00 , E01D101/40
摘要: 本发明公开了一种高强度环氧-铁丝网构筑物块体加固工艺,对构筑物结构块体进行现场灌浆加固处理,包括以下步骤;A)在被处理构筑物的表面设置模板,模板内侧铺设隔离层;B)在模板内放置作为增强体轧花编织铁丝网预埋件;C)向模版内灌注高强度、耐高温、高流动度环氧树脂灌浆料;截面配筋率为1%;D)待环氧树脂固化后移去模板完成加固作业。本发明不仅保持环氧树脂灌浆料的高强度、耐高温特性,而且明显改善该材料韧性,对结构承载力日益消弱的铁筋混凝土或预应力混凝土梁进行加固处理,恢复并提高其正常使用荷载,以及提高其抗拉极限应变。
-
公开(公告)号:CN114164775B
公开(公告)日:2022-10-18
申请号:CN202111632932.4
申请日:2021-12-28
申请人: 四川交大工程检测咨询有限公司 , 西南交通大学
摘要: 本发明涉及桥梁轨道复旧方法技术领域,具体公开了一种基于桥梁轨道消缺顶升工艺的精调复旧方法。步骤1,施工准备;步骤2,梁体顶升;步骤3,病害复旧;步骤4,纠偏精调;步骤5,校核恢复。于震后桥梁病害的特殊性,传统的复旧方法不适用于震后桥梁病害,并且多点位的顶升千斤顶精度得不到有效保证,本发明通过模糊PID控制器结合模糊算法能够严格精确控制顶升量,实现梁体的同步精确顶升。本发明基于顶升装置系统的纠偏精调能够实现对桥梁震后病害进行修复的问题,并且修复材料的针对性强,修复时间快,养护时间短,恢复4‑5小时后便能够恢复通车。
-
-
-
-
-
-
-
-
-