一种六轴工业机器人定位误差补偿方法

    公开(公告)号:CN118848963A

    公开(公告)日:2024-10-29

    申请号:CN202410884440.1

    申请日:2024-07-03

    IPC分类号: B25J9/16

    摘要: 本发明公开了一种六轴工业机器人定位误差补偿方法,包括:对机器人进行运动学建模和关节空间分割,并将前三轴关节空间和后三轴关节空间分别进行网格化离散,网格点作为采样点;将激光跟踪仪转站到机器人基坐标系;对前三轴关节空间的采样点进行跟踪测量,利用专用工装在同一采样点同时采集三个点位信息以计算采样点对应的位置和姿态误差;将激光跟踪仪转站到机器人手腕坐标系;对后三轴关节空间的采样点进行跟踪测量,计算采样点对应的定位误差;根据采样点的位姿误差数据计算目标点的位姿误差;根据得到的位姿误差实现定位误差补偿。本发明可有效解决对六轴工业机器人进行关节空间网格补偿所存在的维度灾难问题,提升机器人定位精度。

    一种外翼翼盒前缘组件的调姿定位系统

    公开(公告)号:CN107052750B

    公开(公告)日:2019-01-15

    申请号:CN201710287742.0

    申请日:2017-04-27

    申请人: 浙江大学

    IPC分类号: B23P19/00 B23P19/10

    摘要: 本发明公开了一种外翼翼盒前缘组件的调姿定位系统,属于飞机数字化装配技术领域。调姿定位系统包括外立柱、内立柱、支撑在外立柱与内立柱上的横梁及位于横梁下方用于对前缘组件进行调姿定位的调姿定位装置,调姿定位装置包括固设在横梁上的安装座、通过第一展向导轨滑块机构悬挂在安装座下方的伸缩座及与伸缩座固定连接的定位机构;伸缩座中的伸缩件为铝合金结构,伸缩座邻近前缘组件翼根的端部与安装座固定连接。采用该定位系统,可实现前缘组件与调姿定位装置在展向上具有热膨胀相容性,在提高前缘组件的安装效率的同时,有效提高其安装质量。

    用于传递飞机大部件支撑位置的方法和装置

    公开(公告)号:CN106314821A

    公开(公告)日:2017-01-11

    申请号:CN201510369244.1

    申请日:2015-06-29

    IPC分类号: B64F5/00

    摘要: 本发明涉及一种用于传递飞机大部件支撑位置的方法,该方法包括:A.为每个支撑部件分别生成局部坐标系;B.在每个局部坐标系上测量任意M个辅助点的局部坐标;C.测量在工艺球头和球窝的接触面上的任意N个测量点的局部坐标;D.根据N个测量点的局部坐标计算其包络成的球面的球心局部坐标;E.将飞机大部件固定在多个支撑部件上;F.为由多个支撑部件构成的飞机装配现场平台生成全局坐标系;G.在全局坐标系上测量M个辅助点的全局坐标;H.计算M个辅助点的局部坐标和全局坐标之间的转换关系;I.根据转换关系将球心局部坐标转换为球心全局坐标;J.将球心全局坐标传递给下一站位的支撑部件。由此,实现了飞机大部件支撑位置在站位间的传递。

    一种飞机主起交点框数字化定位装置的飞机主起交点框数字化定位方法

    公开(公告)号:CN102745340B

    公开(公告)日:2014-12-31

    申请号:CN201210232852.4

    申请日:2012-07-05

    IPC分类号: B64F5/00

    摘要: 本发明公开了一种飞机主起交点框数字化定位装置及安装方法。它包括主起框定位型架和实现数字化定位的凋姿定位器;主起框定位型架由四个相互独立的第一主起工艺框、第二主起工艺框、第三主起工艺框、第四主起工艺框组成,通过连接梁连接;每个主起工艺框均设有上、下工艺孔,上工艺孔内嵌入第一衬套,上工艺孔侧面设有第一接头销轴、第一接头压板、第一快压螺栓;在下工艺孔内嵌入第二衬套,下工艺孔侧面设有第二接头销轴、第二接头压板、第二快压螺栓,在连接梁上设有第一工艺球头座、第二工艺球头座。本发明可实现飞机四个不同位置的主起交点框定位、安装;安装型架通过一组调姿器定位器进行姿态调整和定位,效率高、工装成本低、开敞性好。

    基于四个数控定位器、调姿平台和移动托架的飞机部件调姿、对接系统及方法

    公开(公告)号:CN102001451B

    公开(公告)日:2013-05-29

    申请号:CN201010545364.X

    申请日:2010-11-12

    申请人: 浙江大学

    IPC分类号: B64F5/00

    摘要: 本发明公开了一种基于四个数控定位器、调姿平台和移动托架的飞机部件调姿、对接系统及方法。系统包括:移动托架、调姿平台、数控定位器、数控定位器组导轨、上位机、球铰连接和激光跟踪仪。调姿、对接步骤为:1)将移动托架固定到调姿平台并用数控定位器支撑;2)机身段入位;3)建立现场装配坐标系和固结在机身段上的局部坐标系;4)测量并计算机身段A的当前姿态;5)数控定位器运动路径规划;6)机身段A姿态调整;7)测量对接孔坐标并计算机身段B的目标位姿;8)计算机身段B的当前位姿;9)机身段B姿态调整;10)机身段对接;11)系统复位;12)撤离移动托架。本发明的优点在于:实现飞机部件的数字化调姿和对接;应用适应性强。

    基于机器人和高度检测单元的飞机机翼水平评估方法

    公开(公告)号:CN102198857B

    公开(公告)日:2013-04-17

    申请号:CN201010545403.6

    申请日:2010-11-12

    申请人: 浙江大学

    IPC分类号: B64C13/16 G01B11/00 G01B5/02

    摘要: 本发明公开了一种基于机器人和高度检测单元的飞机机翼水平评估方法。该方法利用机器人手持水平测量点高度检测工装对机翼上的水平测量点高度进行测量,并将测量结果传递到主控系统,主控系统对测量结果与数字化标准模型进行匹配计算,评估机翼姿态,若机翼姿态满足精度要求,则调姿操作结束,否则计算调姿路径,并驱动真空吸附式三坐标柔性调姿单元实现对机翼的姿态调整。本发明的优点有:(1)整个过程由测量系统和机器人协同完成,评估过程高度自动化。(2)采用比较先进的测量仪器(激光跟踪仪、直线位移传感器),不但可以满足飞机装配中对机翼的精确调姿要求,而且效率高,适应性好。(3)评估数学模型求解简单。