-
公开(公告)号:CN116580248A
公开(公告)日:2023-08-11
申请号:CN202310662519.5
申请日:2023-06-06
Applicant: 杭州电子科技大学
Inventor: 赵健祥 , 颜成钢 , 张帅杰 , 杨德富 , 吕骏晖 , 乔松 , 何敏 , 王帅 , 赵治栋 , 高宇涵 , 孙垚棋 , 朱尊杰 , 张继勇 , 李宗鹏 , 殷海兵 , 王鸿奎
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多模态数据的AD图像预测与分类方法。首先进行数据预处理;然后构建AD图像预测与分类网络模型;通过空间信息聚合模块将预处理后的所有的脑区域图像重组为相同大小的特征patch块;通过patch特征提取模块获取加强patch‑leaval块;再通过注意力多实例学习模块来加强全局特征;最后通过全局分类器得到分类概率p;本发明使用了多模态数据结合的方式进行训练,增强了分类识别效果。本发明提出重采样提取图像特征的方法,将多模态的数据按照相同方法处理,标准化的图像提高泛化能力。
-
公开(公告)号:CN116071606A
公开(公告)日:2023-05-05
申请号:CN202310210827.4
申请日:2023-03-07
Applicant: 杭州电子科技大学丽水研究院
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06V10/40 , G06N3/047 , G06N3/08 , G06N3/0464
Abstract: 本发明公开了基于多尺度多注意力实例学习的sMRI图像分类方法,首先获取数据集,构建多尺度多注意力实例学习模型,通过空间金字塔池化模块将不同大小脑区转化为相同尺度;通过patch‑net处理模块获取相应的局部特征增强;通过注意力多实例学习模块来增强全局特征;通过分类器得到分类结果;最后通过训练多尺度多注意力实例学习模型。本发明是采取了区域块的分析方法,能获取对大脑病变影响更大的位置,引入了双注意机制,能增强到局部和全局的特征;本发明采用了将分割数据和脑区数据结合的多模态数据,加强分类效果。
-
公开(公告)号:CN115409857A
公开(公告)日:2022-11-29
申请号:CN202211215390.5
申请日:2022-09-30
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于深度学习的三维脑积水CT图像分割方法,包括以下步骤:步骤(1)、获取数据集;步骤(2)、数据预处理;步骤(3)、构建残差U‑net卷积网络模型;步骤(4)、通过预处理后的数据对构建的残差U‑net卷积网络模型进行训练;步骤(5)、将测试数据输入训练好的残差U‑net卷积网络模型,对模型进行测试。本发明引入残差卷积作为基本卷积单元,增强分割模型得鲁棒性本发明基于深度学习对CT图像中的脑室区域构建三维分割模型,充分利用数据在三维空间上带来的优势,探究高维度信息给模型带来的可能性,提高最终表现效果的准确度。
-
-