-
公开(公告)号:CN116721759A
公开(公告)日:2023-09-08
申请号:CN202310668915.9
申请日:2023-06-07
Applicant: 杭州电子科技大学
Inventor: 赵健祥 , 颜成钢 , 沈晨雨 , 杨德富 , 乔松 , 吕骏晖 , 何敏 , 王帅 , 殷海兵 , 王鸿奎 , 赵治栋 , 高宇涵 , 孙垚棋 , 朱尊杰 , 张继勇 , 李宗鹏
IPC: G16H50/20 , G16H50/70 , G06V10/764 , G06V10/774 , G06V10/82 , G06N3/042 , G06N3/048 , G06N3/08
Abstract: 本发明公开了基于半脑不对称性的AD脑网络预测与分类方法及系统。针对AD脑网络预测与分类问题,采取了基于半脑不对称性的AD脑网络预测与分类方法,根据AD病理的半脑不对称性,通过全脑结构脑网络求出左右半脑网络,然后使用图同构神经网络对这三类数据进行脑图的嵌入学习,在嵌入学习时学习的是三者的共同特征,从而提高嵌入向量所含有的特征信息,从而最终提高脑图预测与分类的准确率。
-
公开(公告)号:CN116662758A
公开(公告)日:2023-08-29
申请号:CN202310662526.5
申请日:2023-06-06
Applicant: 杭州电子科技大学
Abstract: 本发明公开了一种基于脑网络拓扑结构的自适应hub节点识别方法,首先确定脑网络的基本数学模型;构建自适应hub识别的能量函数;再确定自适应hub识别的最优化方法;之后预处理真实的神经影像数据,最后执行优化算法求取hub节点。本发明的自适应hub识别方法可以依靠在方法中加入的自适应识别策略自动为每个网络选择最佳的hub数目,极大的提高了识别hub脑区的准确性和效率。
-
公开(公告)号:CN116580248A
公开(公告)日:2023-08-11
申请号:CN202310662519.5
申请日:2023-06-06
Applicant: 杭州电子科技大学
Inventor: 赵健祥 , 颜成钢 , 张帅杰 , 杨德富 , 吕骏晖 , 乔松 , 何敏 , 王帅 , 赵治栋 , 高宇涵 , 孙垚棋 , 朱尊杰 , 张继勇 , 李宗鹏 , 殷海兵 , 王鸿奎
IPC: G06V10/764 , G06V10/774 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于多模态数据的AD图像预测与分类方法。首先进行数据预处理;然后构建AD图像预测与分类网络模型;通过空间信息聚合模块将预处理后的所有的脑区域图像重组为相同大小的特征patch块;通过patch特征提取模块获取加强patch‑leaval块;再通过注意力多实例学习模块来加强全局特征;最后通过全局分类器得到分类概率p;本发明使用了多模态数据结合的方式进行训练,增强了分类识别效果。本发明提出重采样提取图像特征的方法,将多模态的数据按照相同方法处理,标准化的图像提高泛化能力。
-
-