-
公开(公告)号:CN119555738A
公开(公告)日:2025-03-04
申请号:CN202510134853.2
申请日:2025-02-07
Applicant: 北京航天试验技术研究所
IPC: G01N25/20
Abstract: 本发明涉及对流换热系数测量技术领域,特别涉及一种低温流体管内对流换热系数的测量系统及方法。其中,该系统包括对流换热系数的测量装置,测量装置包括第一中间管路、两个第一加热电极和多个第一温度传感器,两个第一加热电极设置于第一中间管路的两端,多个第一温度传感器用于测量位于两个第一加热电极之间的第一中间管路的壁面温度;基于低温流体流经第一中间管路的质量流量、低温流体比热随温度的变化函数、两个第一加热电极之间的第一中间管路的长度、第一中间管路的内径、两个第一加热电极的加热功率以及多个第一温度传感器测得的壁面温度,确定低温流体管内的对流换热系数。上述方案能够有效实现液氢等低温流体的对流换热系数的测量。
-
公开(公告)号:CN116936863B
公开(公告)日:2024-03-12
申请号:CN202310969324.5
申请日:2023-08-02
Applicant: 北京航天试验技术研究所
IPC: H01M8/04082 , H01M8/04089 , H01M8/04029 , H01M8/04014 , H01M8/04225 , H01M8/04302
Abstract: 本发明公开了一种冷启动的液氢储供系统及其方法,涉及氢空燃料电池技术领域。本发明采用液氢对经过压缩机压缩后的空气进行冷却,降低燃料电池的结构热负荷并可作为空调制冷冷源;利用高压氢气温度高于转换温度时节流升温的特性结合氢气燃烧器,实现氢空燃料电池的快速冷启动,且结构简单、性能稳定;利用高压氢气温度低于转换温度时节流降温的特性结合液氢冷源,实现氢空燃料电池的正常运行时的冷却,减少氢空燃料电池的能量消耗并提高运行效率。
-
公开(公告)号:CN116936863A
公开(公告)日:2023-10-24
申请号:CN202310969324.5
申请日:2023-08-02
Applicant: 北京航天试验技术研究所
IPC: H01M8/04082 , H01M8/04089 , H01M8/04029 , H01M8/04014 , H01M8/04225 , H01M8/04302
Abstract: 本发明公开了一种冷启动的液氢储供系统及其方法,涉及氢空燃料电池技术领域。本发明采用液氢对经过压缩机压缩后的空气进行冷却,降低燃料电池的结构热负荷并可作为空调制冷冷源;利用高压氢气温度高于转换温度时节流升温的特性结合氢气燃烧器,实现氢空燃料电池的快速冷启动,且结构简单、性能稳定;利用高压氢气温度低于转换温度时节流降温的特性结合液氢冷源,实现氢空燃料电池的正常运行时的冷却,减少氢空燃料电池的能量消耗并提高运行效率。
-
公开(公告)号:CN115745713B
公开(公告)日:2023-11-14
申请号:CN202211465705.1
申请日:2022-11-22
Applicant: 北京航天试验技术研究所
Abstract: 本发明公开了一种高密度氢氧推进剂同步制备系统及其方法,属于低温设备领域。本发明通过将高密度氢氧推进剂的制备过程耦合在开式氦液化循环流程中,可实现高密度氢氧推进剂组合的高效一体化制备,且制备规模将远大于低温冷机、抽空减压等传统方法,符合航天发射场对致密化低温推进剂制备和加注系统要求。本发明的系统中各回热器所处温区合理,构成温差均匀的梯度温度场,有效提升高密度氢氧推进剂同步制备系统的热力学效率。本发明利用价格低廉、安全性高的液氮介质两级预冷压缩后的高温氦工质,可有效降低氦气压缩机、氦膨胀机等部件的功率。
-
公开(公告)号:CN117039050A
公开(公告)日:2023-11-10
申请号:CN202310968187.3
申请日:2023-08-02
Applicant: 北京航天试验技术研究所
IPC: H01M8/04082 , H01M8/04007 , H01M8/04119 , H01M8/04089 , H01M8/04228 , H01M8/04303
Abstract: 本发明公开了一种惰性气体吹扫的氢储供系统及其方法,涉及氢能飞机技术领域。本发明利用汽化后的低温氢气冷量对压缩后的空气同时进行冷却和除湿,一体化设计大幅减小系统复杂度;利用氢空燃料电池的热量实现冷冻除湿器的再生,实现氢空燃料电池的高效热管理并减少额外热量损耗;采用膜分离器将空气分为富氧气和富氮气,其中富氧气进入氢空燃料电池进行反应,通过提高氧含量提升运行效率,富氮气则对液氢储罐及其配套系统进行正压吹扫,提升储供系统的整体安全性。
-
公开(公告)号:CN117039049A
公开(公告)日:2023-11-10
申请号:CN202310967402.8
申请日:2023-08-02
Applicant: 北京航天试验技术研究所
IPC: H01M8/04082 , H01M8/04089 , H01M8/04007 , H01M8/04014 , H01M8/04228 , H01M8/04303
Abstract: 本发明公开了一种富氧液氢储供系统及其方法,涉及氢能飞机技术领域。本发明采用吸附器将空气分为富氧气和富氮气,其中富氧气进入氢空燃料电池进行反应,通过提高氧含量提升运行效率,富氮气则对液氢储罐及其配套系统进行正压吹扫,提升储供系统的整体安全性。利用液氢汽化冷量对压缩机压缩后的空气冷却,利用仲正氢转化冷量对吸附剂进行冷却,通过双级设计提升液氢冷量的利用率并增强吸附器的氧气吸附量。利用氢空燃料电池运行时产生的热量对再生气进行加热,完成吸附剂的再生,减少外部热量输入并通过热管理提升氢空燃料电池的运行效率。
-
公开(公告)号:CN116972340A
公开(公告)日:2023-10-31
申请号:CN202310937766.1
申请日:2023-07-27
Applicant: 北京航天试验技术研究所
Abstract: 本发明公开了一种液氢飞机的综合管理系统及其方法。该系统通过温度三通阀和流量三通阀的耦合作用,在液氢进入超临界之前对其温度和流量进行精确控制,有效解决超临界氢物性转变带来的控制难题;同时流量调节过程中多余的高压液氢直接进行节流,对液氢储罐进行冷却,实现了液氢流量调节和无损存储的有效统一,降低了液氢损耗率。另外本发明采用仲正氢转化预冷器和液氢汽化器对进入压气机之前的空气进行充分预冷,可以有效提升压气机的压缩效率并实现液氢介质冷量的充分利用;且燃料电池反应产生的水用于对来自发动机的高温冷却剂进行初步预冷,提升了液氢飞机的整体能量利用率。
-
公开(公告)号:CN116972332A
公开(公告)日:2023-10-31
申请号:CN202310974136.1
申请日:2023-08-03
Applicant: 北京航天试验技术研究所
Abstract: 本发明公开了一种液氢储罐轻量化增压装置及方法。常规液氢储供系统的自增压过程通常将液氢汽化后的高压氢气通过调节阀减压到设定压力后,再将其通入到液氢储罐中进行增压,并根据实际液氢储罐的出口流量改变调节阀的氢气出口压力。然而,上述结构中的调节阀、流量计等部件的重量较大,难以适应航空载具等对轻量化指标要求较高的工况。本发明利用结构简单的电控氢气截止阀代替常规液氢储供系统中的调节阀、流量计等大体积和大重量的部件,同时改变电控氢气截止阀的开启频率实现不同液氢流量调节的目的,最终提升液氢储供系统的储重比和液氢流量的调节精度。
-
公开(公告)号:CN115823501A
公开(公告)日:2023-03-21
申请号:CN202211465717.4
申请日:2022-11-22
Applicant: 北京航天试验技术研究所
Abstract: 本发明公开了一种埋地管道泄漏监测定位装置及方法。本发明利用天然气或氢气等介质泄漏时产生的氮渗透现象有效解决了埋地管道泄漏难以检测的问题。本发明采用了一种先被动检测再主动式扰动检测的方法,可以实现多种复杂情况下的埋地管道泄漏位置定位,总体准确性较高。该装置整体经济成本低、安全性高,埋地管道泄漏监测定位装置的相关部件可安装在连接法兰处,不会对埋地管道整体结构和布局产生影响,应用和推广方便。
-
公开(公告)号:CN115745713A
公开(公告)日:2023-03-07
申请号:CN202211465705.1
申请日:2022-11-22
Applicant: 北京航天试验技术研究所
Abstract: 本发明公开了一种高密度氢氧推进剂同步制备系统及其方法,属于低温设备领域。本发明通过将高密度氢氧推进剂的制备过程耦合在开式氦液化循环流程中,可实现高密度氢氧推进剂组合的高效一体化制备,且制备规模将远大于低温冷机、抽空减压等传统方法,符合航天发射场对致密化低温推进剂制备和加注系统要求。本发明的系统中各回热器所处温区合理,构成温差均匀的梯度温度场,有效提升高密度氢氧推进剂同步制备系统的热力学效率。本发明利用价格低廉、安全性高的液氮介质两级预冷压缩后的高温氦工质,可有效降低氦气压缩机、氦膨胀机等部件的功率。
-
-
-
-
-
-
-
-
-