-
公开(公告)号:CN108600621A
公开(公告)日:2018-09-28
申请号:CN201810332499.4
申请日:2018-04-13
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 一种解决屏幕弹窗过快而无法捕捉的方法,涉及计算机视觉及工业自动化技术领域;包括如下步骤:步骤(一)、摄像头实时对显示屏幕拍照,并将照片储存于控制主机;步骤(二)、控制主机对最后储存的两张图片进行判断,判断图片中是否有弹窗;步骤(三)、驱动执行机构执行按钮操作,完成任务操作需求;步骤(四)、在弹窗按钮操作结束瞬间,控制主机控制摄像头对显示屏幕拍照;步骤(五)、执行机构继续进行按钮操作,直至完成任务操作需求;本发明的目的在于克服现有技术的上述不足,提供一种解决屏幕弹窗过快而无法捕捉的方法,选择系统子块驱动的来实现这一背景操作,效果良好,能达到视觉系统始终捕捉到屏幕中的弹窗信息。
-
公开(公告)号:CN108873777A
公开(公告)日:2018-11-23
申请号:CN201810695567.3
申请日:2018-06-29
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G05B19/042
Abstract: 本发明涉及一种地面测试发射控制系统监控平台及监控方法,合理规划地面单机与电缆网布局,采集状态显示器与中心计算机显示器显示图像,测发控设备面板状态图像,识别当前执行的流程步骤;从模板中调取对应模板,并进行匹配,如果匹配一致表明当前测试状态正常,如果不一致,则报警。本发明通过电缆整理箱对原本电缆放置位置的重新排布,设置走线槽。提供了独立的走线空间,有助于测发控系统各单机、监控与操作面板的集中。本发明通过识别首字与色块长度,进行综合判断,保证了流程识别的准确性,通过流程获取对应的模板,通过于模板的匹配保证了设备状态的准确监控。
-
公开(公告)号:CN110118777A
公开(公告)日:2019-08-13
申请号:CN201910359878.7
申请日:2019-04-30
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及航天系统检测领域,尤其为一种控制系统系统集成智能检验台,包括控制系统系统集成智能检验台,所述控制系统系统集成智能检验台由图像检测识别模块、智能检验台硬件台体模块和检验数据管理系统模块组成,且所述智能检验台硬件台体模块包含台面、设备转盘、三维滑台和滑台控制驱动器,所述台面上端一侧设有图像显示屏,所述台面上端靠近图像显示屏处设有设备转盘,所述设备转盘上端设有待检验物体,所述设备转盘上方倒置安装有三维滑台,所述三维滑台一侧固定连接有滑台控制驱动器,所述三维滑台下端端部载有摄像设备。本发明解决了由于目前航天设备检验过程依靠人工检测,检验工作强度大,人员疲劳的问题,解放了劳动力。
-
公开(公告)号:CN109597410A
公开(公告)日:2019-04-09
申请号:CN201811437340.5
申请日:2018-11-28
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及一种自主路径规划的可移动测试台及自主寻路方法,自主移动系统承载测试设备,接收人为输入的地点信息,进行路径规划,进行路径优化获取最优路径,依照最优路径达计算出运动信息;自适应电缆支撑架用于支撑测试设备与外部连接的电缆,使得电缆连接处的弯折角度满足角度阈值要求。本发明可以代替测试人员将设备自主移动到指定的测试工位,减少人力成本,减少了搬移过程中可能对设备造成的损伤。同时在高电离辐射环境下,代替测试人员完成测试,为测试人员职业安全提供保障。本发明可快速构建试验室环境地图,减少前期准备工作,也不需要对试验现场进行改造,就可以应用于陌生的测试环境中,大幅提高了测试台的应用范围。
-
公开(公告)号:CN108897305A
公开(公告)日:2018-11-27
申请号:CN201810695931.6
申请日:2018-06-29
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G05B23/02
Abstract: 本发明涉及一种控制系统系统集成交付立体测试平台,包括主体框架、供配电系统,静电释放系统,视觉识别及执行系统,惯性器件隔离系统;主体框架为三层结构,上层设置托板,托板用于布置飞行控制系统单机;中层用于布置飞行控制系统电缆网主体结构;下层用于布置测试飞行控制系统的测试发射控制系统单机、测试设备以及供配电系统;供配电系统为立体测试平台供电。本发明的主体框架为三层结构,将飞行控制系统单机、飞行控制系统电缆网、部分测试发射控制系统单机分层布置,布局清晰,便于电缆的连接、查找及更换,避免人员的误操作;有效减少电缆网测试过程中损伤的风险;有效减少了不同种类电缆交叉重叠,提高了测试效率。
-
公开(公告)号:CN115631219A
公开(公告)日:2023-01-20
申请号:CN202211188625.6
申请日:2022-09-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种图像匹配的方式处理数据图像的判读方法及系统,包括对作动器数据进行自动分割,得到作动器位移角度数据和作动器动作角度数据;分别绘制位移角度散点图和动作角度散点图;将位移角度散点图和动作角度散点图分别变换为位移伺服曲线和动作伺服曲线;将位移伺服曲线和动作伺服曲线进行灰度化,得到灰度图;将灰度图进行二值化,将二值化图像进行归一化的相关性匹配,根据若干归一化匹配结果,确定相关峰阈值;若归一化匹配结果大于相关峰阈值,则作动器位移角度数据和作动器动作角度数据配准成功,绘制复合图像;若小于相关峰阈值,则配准未成功,绘制复合图像,进行排故。避免了大批量生产时人力、时间消耗,保证判读的正确性。
-
公开(公告)号:CN109597410B
公开(公告)日:2022-03-04
申请号:CN201811437340.5
申请日:2018-11-28
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及一种自主路径规划的可移动测试台及自主寻路方法,自主移动系统承载测试设备,接收人为输入的地点信息,进行路径规划,进行路径优化获取最优路径,依照最优路径达计算出运动信息;自适应电缆支撑架用于支撑测试设备与外部连接的电缆,使得电缆连接处的弯折角度满足角度阈值要求。本发明可以代替测试人员将设备自主移动到指定的测试工位,减少人力成本,减少了搬移过程中可能对设备造成的损伤。同时在高电离辐射环境下,代替测试人员完成测试,为测试人员职业安全提供保障。本发明可快速构建试验室环境地图,减少前期准备工作,也不需要对试验现场进行改造,就可以应用于陌生的测试环境中,大幅提高了测试台的应用范围。
-
公开(公告)号:CN110991949A
公开(公告)日:2020-04-10
申请号:CN201911041856.2
申请日:2019-10-30
Applicant: 北京航天自动控制研究所
IPC: G06Q10/08
Abstract: 一种航天控制系统产品库存智能管理系统,包括产品入库管理规划模块和智能存储模块,产品入库管理规划模块包括产品自动识别系统和存储空间规划系统,产品自动识别系统包括产品信息采集装置、产品数据库和条码生成器,产品信息采集装置将产品外观图像和铭牌进行采集,与产品库中标准模板相匹配,生成唯一产品编码,存储空间规划系统通过空间规划算法,根据产品信息,对尺寸、重量、使用频率信息设定不同的权重,根据当前货柜中剩余库存容量设计出最优存储方案,智能存储模块由产品存取执行系统、柔性智能立体货柜和库存数据管理系统组成。
-
公开(公告)号:CN108897305B
公开(公告)日:2020-04-10
申请号:CN201810695931.6
申请日:2018-06-29
Applicant: 北京航天自动控制研究所 , 中国运载火箭技术研究院
IPC: G05B23/02
Abstract: 本发明涉及一种控制系统系统集成交付立体测试平台,包括主体框架、供配电系统,静电释放系统,视觉识别及执行系统,惯性器件隔离系统;主体框架为三层结构,上层设置托板,托板用于布置飞行控制系统单机;中层用于布置飞行控制系统电缆网主体结构;下层用于布置测试飞行控制系统的测试发射控制系统单机、测试设备以及供配电系统;供配电系统为立体测试平台供电。本发明的主体框架为三层结构,将飞行控制系统单机、飞行控制系统电缆网、部分测试发射控制系统单机分层布置,布局清晰,便于电缆的连接、查找及更换,避免人员的误操作;有效减少电缆网测试过程中损伤的风险;有效减少了不同种类电缆交叉重叠,提高了测试效率。
-
公开(公告)号:CN118396139A
公开(公告)日:2024-07-26
申请号:CN202311621322.3
申请日:2023-11-30
Applicant: 北京航天自动控制研究所
IPC: G06N20/20 , G06F18/243
Abstract: 本申请实施例中提供了一种基于切比雪夫法则和孤立森林机器学习方法的数据处理方法,涉及数据分析技术领域,该方法包括以下步骤:对采用同一种控制系统的不同飞行器的数据进行正态性检验;使用切比雪夫法则,对于单条数据进行数据包络分析,得出合格不包络点和不合格点;使用孤立森林机器学习方法对不同飞行器的所有数据的一致性进行分析,得出数据的一致性结论;对不同发次数据的数据包络分析,得出数据一致性的好坏,映射该飞行器存在问题,找到问题设备和问题飞行器。本申请,可以达到原本数据包络分析的目的,得出设备可能或已经出现的故障,和得出数据一致性的好坏,找到潜在问题设备和问题飞行器。
-
-
-
-
-
-
-
-
-