-
公开(公告)号:CN114247887B
公开(公告)日:2023-02-28
申请号:CN202111496430.3
申请日:2021-12-08
Applicant: 北京科技大学
Abstract: 一种场发射微纳钨发射极的成形方法,属于粉末冶金技术领域。首先采用一次或者多次气流磨处理改善钨粉的粉末状态,得到细粒度、高分散、窄分布近球形钨粉颗粒,有利于在成形阶段形成更加均匀的开孔结构。其次将处理后的粉末进行一次或者多次的煅烧处理,以消除气流磨过程中产生的内应力。再次将该粉末与粘结剂混合均匀制成喂料,在微注射成形设备上成形所需形状和尺寸的钨坯体,最后经脱脂和烧结制备出具有均匀孔隙的场发射微纳钨发射极。本发明显著优化了原料粉末和微粉末注射成形工艺,制备出的场发射微纳钨发射极杂质含量低、孔隙均匀、晶粒尺寸≤1μm,孔径200~800nm,孔隙率15~35%,开孔孔隙度占总孔隙度的95%以上。
-
公开(公告)号:CN114934207A
公开(公告)日:2022-08-23
申请号:CN202210551592.0
申请日:2022-05-20
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高强高塑弥散强化钨合金的方法,属于粉末冶金领域。具体制备方法为:以机械合金化法或湿化学法结合氢气还原制备纳米第二相粒子掺杂金属钨粉末;采用热等静压、热压烧结或多步放电等离子烧结技术制备高强高塑弥散强化钨合金。本方法制备的高强高塑弥散强化钨合金相对密度优选大于98.0%,晶粒尺寸优选小于2.0μm,室温压缩塑性甚至超过30.0%,室温压缩强度甚至超过5.0GPa,兼具强度和塑性。本方法的原料简单易得,工艺简单快捷,适合进行大规模生产。
-
公开(公告)号:CN110722171A
公开(公告)日:2020-01-24
申请号:CN201910947263.6
申请日:2019-09-30
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备3D打印用稀土氧化物掺杂钨、钼球形粉末的方法,属于粉末冶金粉末制备技术领域。具体制备方法为:采用低温溶液燃烧合成法制备稀土氧化物/氧化钨(氧化钼)复合粉末,然后通过氢气还原得到稀土氧化物掺杂的纳米钨(钼)粉末,接着使用喷雾造粒设备将纳米粉末进行造粒,造粒粉末经过煅烧、研磨、筛分后得到可用于3D打印的球形钨(钼)粉末。本发明原料简单易得,设备简单,工艺快捷,可以在短时间内制备大量的产物,适合大规模生产。制备的钨、钼球形粉末中稀土氧化物可以均匀地分散,且颗粒细小,不会出现氧化物粒子的偏聚,且稀土氧化物的加入量可以通过低温溶液燃烧合成过程进行调整。所制备的钨、钼球形粉末的球形度和流动性优异,极为适合3D打印工艺。
-
公开(公告)号:CN114535339B
公开(公告)日:2023-10-10
申请号:CN202210114907.5
申请日:2022-01-31
Applicant: 安泰科技股份有限公司 , 安泰天龙钨钼科技有限公司 , 北京科技大学
Abstract: 本发明属于稀有难熔金属领域,涉及一种大尺寸均匀化高纯铼板的加工方法,该将高纯铼酸铵进行多次氢还原处理,制得铼粉,然后装入模具内冷等静压,在低温下氢气烧结预处理和高温致密化烧结,取出高纯铼板坯进行表面酸洗纯净化;对铼板坯进行侧面预轧制,在进行多道次的交叉轧制,直至轧件长度达到成品所要求的长度。最后进行平整工序,控制压下率
-
公开(公告)号:CN114603146B
公开(公告)日:2023-05-23
申请号:CN202210114903.7
申请日:2022-01-31
Applicant: 安泰天龙钨钼科技有限公司 , 安泰科技股份有限公司 , 北京科技大学
Abstract: 本发明属于先进金属材料制备研究领域,涉及一种均匀化的大尺寸钨坩埚的制备方法。该方法步骤为对原料钨粉进行按照粒径大小依次分若干等级;将分级后钨粉按照设计排列顺序逐层依次装入组装后坩埚模具中,密封;先采用冷等静压进行压制,再长时间保压并分阶段卸压;将压制后的坯料进行多段氢气烧结,获得均匀化的大尺寸钨坩埚。本发明的方法通过“长时保压+多阶段卸压”的成形技术,有效提高了大尺寸压坯的整体密度及均匀性,通过沿坩埚壁厚方向依次装入不同粒度的粉末,结合分阶段装料+分阶段烧结实现坩埚坯料在分阶段烧结过程中由内向外逐步致密化,最终实现烧结收缩率精确控制,显著提高了烧结制品的整体密度及均匀性。
-
公开(公告)号:CN114574821B
公开(公告)日:2023-05-23
申请号:CN202210114908.X
申请日:2022-01-31
Applicant: 安泰科技股份有限公司 , 北京科技大学 , 安泰天龙钨钼科技有限公司
IPC: C23C14/34 , B22F5/00 , B22F9/22 , B22F3/04 , B22F3/10 , B22F3/17 , B22F3/18 , B22F3/24 , C22F1/18 , C22F1/02 , C23F1/26 , C23G1/10
Abstract: 本发明属于先进金属材料制备研究领域,涉及一种大尺寸钼靶材的制备方法。该方法以以钼酸铵为原料,先进行氨溶和阳离子交换处理,之后蒸发结晶后氢气还原得到高纯钼粉;将得到高纯钼粉进行冷等静压和氢气烧结制备得到高纯钼板坯;将得到的高纯钼板坯采用一火一道次加工方式进行预锻造开坯,得到预锻坯料,再采用一火两道次加工方式进行多道次交叉轧制,得到轧制板坯;对得到的轧制板坯进行表面化学腐蚀,再对腐蚀后的板坯进行均匀化退火处理,最终获得大尺寸钼靶材。采用本发明制备方法所达到的目标效果是有针对性提纯,高纯靶材成品的晶粒细小,沿靶材厚度方向的晶粒均匀性良好且晶粒取向分布均匀。
-
公开(公告)号:CN114619038A
公开(公告)日:2022-06-14
申请号:CN202210114912.6
申请日:2022-01-31
Applicant: 北京科技大学
IPC: B22F9/22 , B22F3/14 , B22F3/24 , C23G1/10 , C01G41/00 , C23C14/34 , B22F1/12 , C22C27/04 , C22C1/05
Abstract: 本发明属于先进金属材料制备研究领域,涉及一种高纯度的钨钛合金靶材的制备方法。该制备方法步骤为:提纯仲钨酸铵;合成钨钛合金粉末;将得到钨钛合金粉末装入模具进行多阶段真空热压烧结,得到靶材坯;对得到的靶材坯进行表面酸洗纯净化,最终获得具有高致密度的高纯度钨钛合金靶材。本发明的方法通过粉体一次纯化、烧结过程二次纯化以及表面纯净化的有针对性、全流程系统高纯化技术。具有制造工艺简单,对设备要求不高,无需后续塑性加工处理,实现了有针对性、全流程的系统提纯,得到的钨钛合金靶材能满足高密度(致密度>99.5%)、高纯度(纯度>99.999%)的应用需求。
-
公开(公告)号:CN114959341B
公开(公告)日:2024-06-04
申请号:CN202210551574.2
申请日:2022-05-20
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高强高塑难熔合金的方法,属于粉末冶金领域。具体制备方法为:以机械合金化或湿化学法结合氢气还原制取纳米第二相粒子掺杂难熔金属粉末;采用两步烧结工艺制备高强高塑难熔合金。本方法制备的高强高塑难熔合金相对致密度优选超过98%,平均晶粒尺寸不超过3μm,室温压缩塑性不低于20.0%,室温压缩强度超过3.0GPa。本发明采用的两步烧结工艺可以降低难熔金属的致密化温度,有效防止晶粒的长大,降低孔隙率,提高致密度,获得具有细晶高致密度的高强高塑难熔合金材料。
-
公开(公告)号:CN115007871A
公开(公告)日:2022-09-06
申请号:CN202210551577.6
申请日:2022-05-20
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高强高塑钼合金的方法,属于粉末冶金领域。具体制备方法为:以机械合金化法或湿化学法结合氢气还原制取纳米第二相粒子掺杂金属钼粉;采用常压烧结或无压烧结制备高强高塑钼合金。本方法制备的高强高塑钼合金相对致密度优选大于98.0%,平均晶粒尺寸优选小于2μm,室温压缩率不低于20.0%,室温压缩强度超过3.0GPa,兼具强度和塑性。本发明的方法为制备纳米氧化物弥散增强钼合金提供了新的思路,具有原料简单易得,工艺简单快捷,生产周期短、成本低、操作方便等优点。
-
公开(公告)号:CN114934222A
公开(公告)日:2022-08-23
申请号:CN202210528262.X
申请日:2022-05-16
Applicant: 北京科技大学
Abstract: 一种具有超大应变硬化能力的高强度高塑性钨合金。通过将室温脆性金属钨与脆性陶瓷巧妙复合,可使二者实现协同变形,材料在室温下呈现出优异的塑性、强度和超大的应变硬化能力。将金属钨的韧脆转变温度从600℃以上降至室温,室温压缩应变大于20.0%,甚至超过40.0%;压缩强度随压缩应变的增加而升高,呈现出超大的应变硬化能力,室温压缩强度超过3.0GPa,甚至可超过5.0GPa,强塑积是传统钨合金的4倍以上;具有优异的热稳定性,在2000℃高温处理10h,平均晶粒尺寸不超过5.0μm,甚至小于3.0μm,仅为传统钨合金的1/10‑1/5。不仅彻底打破了金属钨因其脆性无法进行室温变形加工以及材料强度与塑性通常不可兼得的传统认知,而且还为其他脆性材料的强韧化设计提供了新思路。
-
-
-
-
-
-
-
-
-