-
公开(公告)号:CN114959341B
公开(公告)日:2024-06-04
申请号:CN202210551574.2
申请日:2022-05-20
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高强高塑难熔合金的方法,属于粉末冶金领域。具体制备方法为:以机械合金化或湿化学法结合氢气还原制取纳米第二相粒子掺杂难熔金属粉末;采用两步烧结工艺制备高强高塑难熔合金。本方法制备的高强高塑难熔合金相对致密度优选超过98%,平均晶粒尺寸不超过3μm,室温压缩塑性不低于20.0%,室温压缩强度超过3.0GPa。本发明采用的两步烧结工艺可以降低难熔金属的致密化温度,有效防止晶粒的长大,降低孔隙率,提高致密度,获得具有细晶高致密度的高强高塑难熔合金材料。
-
公开(公告)号:CN115007871A
公开(公告)日:2022-09-06
申请号:CN202210551577.6
申请日:2022-05-20
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高强高塑钼合金的方法,属于粉末冶金领域。具体制备方法为:以机械合金化法或湿化学法结合氢气还原制取纳米第二相粒子掺杂金属钼粉;采用常压烧结或无压烧结制备高强高塑钼合金。本方法制备的高强高塑钼合金相对致密度优选大于98.0%,平均晶粒尺寸优选小于2μm,室温压缩率不低于20.0%,室温压缩强度超过3.0GPa,兼具强度和塑性。本发明的方法为制备纳米氧化物弥散增强钼合金提供了新的思路,具有原料简单易得,工艺简单快捷,生产周期短、成本低、操作方便等优点。
-
公开(公告)号:CN114934222A
公开(公告)日:2022-08-23
申请号:CN202210528262.X
申请日:2022-05-16
Applicant: 北京科技大学
Abstract: 一种具有超大应变硬化能力的高强度高塑性钨合金。通过将室温脆性金属钨与脆性陶瓷巧妙复合,可使二者实现协同变形,材料在室温下呈现出优异的塑性、强度和超大的应变硬化能力。将金属钨的韧脆转变温度从600℃以上降至室温,室温压缩应变大于20.0%,甚至超过40.0%;压缩强度随压缩应变的增加而升高,呈现出超大的应变硬化能力,室温压缩强度超过3.0GPa,甚至可超过5.0GPa,强塑积是传统钨合金的4倍以上;具有优异的热稳定性,在2000℃高温处理10h,平均晶粒尺寸不超过5.0μm,甚至小于3.0μm,仅为传统钨合金的1/10‑1/5。不仅彻底打破了金属钨因其脆性无法进行室温变形加工以及材料强度与塑性通常不可兼得的传统认知,而且还为其他脆性材料的强韧化设计提供了新思路。
-
公开(公告)号:CN114959341A
公开(公告)日:2022-08-30
申请号:CN202210551574.2
申请日:2022-05-20
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高强高塑难熔合金的方法,属于粉末冶金领域。具体制备方法为:以机械合金化或湿化学法结合氢气还原制取纳米第二相粒子掺杂难熔金属粉末;采用两步烧结工艺制备高强高塑难熔合金。本方法制备的高强高塑难熔合金相对致密度优选超过98%,平均晶粒尺寸不超过3μm,室温压缩塑性不低于20.0%,室温压缩强度超过3.0GPa。本发明采用的两步烧结工艺可以降低难熔金属的致密化温度,有效防止晶粒的长大,降低孔隙率,提高致密度,获得具有细晶高致密度的高强高塑难熔合金材料。
-
公开(公告)号:CN114959339A
公开(公告)日:2022-08-30
申请号:CN202210533026.7
申请日:2022-05-16
Applicant: 北京科技大学
Abstract: 一种湿化学法制备高强度高塑性钨合金的方法,属于粉末冶金技术领域。以可溶性的钨盐和第二相粒子源的可溶性金属盐为原料,利用湿化学方法将二者原位复合,制备出氧化钨与第二相粒子氧化物的复合粉体,将复合粉体在氢气中还原得到纳米氧化物掺杂金属钨粉,将粉体成型后烧结,即可得到高强高塑钨合金。本发明工艺简单,材料具有优异的加工硬化能力和高强高塑特征,相对密度不低于95.0%,甚至大于98.0%;晶粒尺寸小于3.0μm,甚至不超过2.0μm;室温压缩塑性大于20.0%,甚至超过40.0%;室温压缩强度超过3.0GPa,甚至超过5.0GPa,较传统钨合金提高2‑4倍;有优异的热稳定性,在2000℃高温处理10h,平均晶粒尺寸不超过5.0μm,甚至小于3.0μm,仅为传统钨合金材料1/10‑1/5。
-
公开(公告)号:CN114959338A
公开(公告)日:2022-08-30
申请号:CN202210527527.4
申请日:2022-05-16
Applicant: 北京科技大学
Abstract: 一种机械合金化制备高强度高塑性钨合金的方法,属于粉末冶金技术领域。原料采用钨粉和第二相陶瓷粒子,其中第二相陶瓷粒子的体积含量不小于3.0%。将钨粉与第二相粒子高能球磨破碎、混合处理,制备出第二相粒子掺杂均匀的纳米钨基粉末,将粉体成型后烧结,即可得到高强度高塑性钨合金。本发明制造工艺简单,所制备材料具有优异的加工硬化能力和高强高塑特征,相对密度不低于95.0%,甚至大于98.0%;晶粒尺寸小于3.0μm,甚至不超过2.0μm;室温压缩塑性大于20.0%,甚至可超过40.0%;室温压缩强度可超过3.0GPa,甚至超过5.0GPa,较传统钨合金提高2‑4倍;具有优异的热稳定性,在2000℃高温处理10h,平均晶粒尺寸不超过5.0μm,甚至小于3.0μm,仅为传统钨合金材料1/10‑1/5。
-
公开(公告)号:CN119284971A
公开(公告)日:2025-01-10
申请号:CN202411177441.9
申请日:2024-08-26
Applicant: 北京科技大学
IPC: C01G51/04 , C01G53/04 , C01G49/02 , C01G9/02 , C01G45/02 , C01G3/02 , C01F17/10 , C01F17/229 , B82Y30/00 , B82Y40/00 , H01M4/90 , H01M12/06
Abstract: 本发明提供了一种拓扑转变合成高熵羟基氧化物纳米片的方法,属于无机材料技术领域,包括以下步骤:1)成分设计:以Ca2Fe2O5褐铁矿型氧化物为基体材料进行元素掺杂;2)燃烧合成前体:利用低温溶液燃烧合成法将步骤1)的原料进行原位复合,将得到的粉末燃烧制备出富含有序氧空位的褐铁矿型氧化物粉末;3)结构重构:将步骤2)得到的富含有序氧空位的褐铁矿型氧化物粉末进行高能超声活化,形成具有高活性的超薄结构纳米片,接着进行离子交换反应,获得所述高熵羟基氧化物纳米片电催化剂。与传统的NiFe和CoFe氢氧化物/羟基氧化物相比,该纳米片催化剂在OER过程中也表现出更高的抗Fe浸出的能力。组装好的锌空气电池能够在低充电电压下稳定运行225小时以上。
-
公开(公告)号:CN114934207A
公开(公告)日:2022-08-23
申请号:CN202210551592.0
申请日:2022-05-20
Applicant: 北京科技大学
Abstract: 本发明提供了一种制备高强高塑弥散强化钨合金的方法,属于粉末冶金领域。具体制备方法为:以机械合金化法或湿化学法结合氢气还原制备纳米第二相粒子掺杂金属钨粉末;采用热等静压、热压烧结或多步放电等离子烧结技术制备高强高塑弥散强化钨合金。本方法制备的高强高塑弥散强化钨合金相对密度优选大于98.0%,晶粒尺寸优选小于2.0μm,室温压缩塑性甚至超过30.0%,室温压缩强度甚至超过5.0GPa,兼具强度和塑性。本方法的原料简单易得,工艺简单快捷,适合进行大规模生产。
-
-
-
-
-
-
-