-
公开(公告)号:CN114750940A
公开(公告)日:2022-07-15
申请号:CN202210147006.6
申请日:2022-02-17
Applicant: 中国直升机设计研究所
IPC: B64C27/473 , B64C27/467 , B64C27/46
Abstract: 本发明属于直升机气动设计技术领域,公开了一种具有三维桨尖的高性能桨叶气动外形。所述桨叶的主翼型段为相对半径0.25R~1.0R,主翼型段的气动扭转率为‑9°/R~‑13°/R,主翼型段的后缘从相对半径0.25R至1.0R为水平直线,前缘从相对半径0.25R至R1为水平直线,从相对半径R1至1.0R为抛物线。所述桨叶采用三维上下反桨尖设计,其中上反桨尖外形为直线,下反桨尖为抛物线。
-
公开(公告)号:CN113942642A
公开(公告)日:2022-01-18
申请号:CN202111376485.0
申请日:2021-11-19
Applicant: 中国直升机设计研究所
IPC: B64C27/467 , G01L11/00
Abstract: 本发明属于直升机旋翼桨叶设计技术领域,公开了一种带有气动压力测量传感器的直升机桨叶。通过在旋翼桨叶表面安装布置能够测量桨叶表面动态压力的传感器,并采用专用蜡进行传感器的固定和桨叶表面气动外形维型,经过旋翼桨叶气动布局设计、结构设计、动力学设计、疲劳强度校核和加工制造的研制流程,从而实现了旋翼高速旋转状态下桨叶表面动态压力的精确测量,为旋翼气动噪声与桨叶表面脉动压力的影响关系研究提供了数据支撑。
-
公开(公告)号:CN112052528A
公开(公告)日:2020-12-08
申请号:CN202011028614.2
申请日:2020-09-25
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , G06F30/28 , G06F111/04 , G06F113/08 , G06F119/10
Abstract: 本发明属于直升机气动设计技术领域,公开了一种直升机新型旋翼桨叶气动外形设计方法。针对现有直升机型号和下一代直升机型号对低噪声、高性能旋翼日益迫切的需求,制定优化目标,基于以往的工程设计经验和大量的气动布局参数敏感性分析结果确定优化参数及范围,采用基于代理模型和遗传算法的优化方法,进行多轮旋翼气动布局优化迭代设计和计算,获得满足性能要求的新型旋翼气动外形设计方案。
-
公开(公告)号:CN115688635A
公开(公告)日:2023-02-03
申请号:CN202211458991.9
申请日:2022-11-17
Applicant: 中国直升机设计研究所
IPC: G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本申请提供一种直升机旋翼桨尖流动主动控制计算方法,所述方法包括:步骤1:在直升机旋翼的桨叶端面翼型中弧线,从前缘至60%C处,每间隔7.5%C,开射流孔,其中,C为旋翼弦长;步骤2:在CFD的前处理过程中,对直升机旋翼进行网格划分,获得直升机旋翼网格;步骤3:在CFD的前处理过程中,生成外流场计算域网格;步骤4:在CFD的计算前,加载外流场计算域网格以及直升机旋翼网格组合成滑移网格系统,设置边界条件,进行CFD计算,获得直升机基准旋翼流场;步骤5:在直升机旋翼基准流场上,进行射流加载,通过调整射流参数,主动控制直升机旋翼桨尖涡的流动。
-
公开(公告)号:CN112214835B
公开(公告)日:2022-05-06
申请号:CN202011028756.9
申请日:2020-09-25
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , G06F30/20 , G06F119/10
Abstract: 本发明属于空气动力学气动噪声技术领域,公开了一种旋翼悬停状态气动噪声工程估算方法。所述方法包括:S1,确定噪声传播距离与平均声压的平方的函数关系;S2,确定旋翼拉力系数与平均声压的平方的函数关系;S3,确定桨尖马赫数与平均声压的平方的函数关系;S4,确定旋翼噪声指向性与平均声压的平方的函数关系;S5,根据S1‑S4的函数关系,确定平均声压的平方与噪声传播距离、旋翼拉力系数、桨尖马赫数、旋翼噪声指向性的关系,所述平均声压的平方用来表征旋翼悬停状态下的气动噪声。根据旋翼悬停状态的基本状态参数计算获得不同状态和位置测点处的噪声水平,能够为数值计算和试验结果判别提供必要的验证方法支撑。
-
公开(公告)号:CN114169070B
公开(公告)日:2024-11-08
申请号:CN202111398904.0
申请日:2021-11-23
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , G06F30/20 , G06F111/04 , G06F111/10
Abstract: 本发明公开一种飞行器的翼型生成方法,包括:建立翼型的厚度分布模型,厚度分布模型通过厚度分段函数表示,且厚度分段函数以最大相对厚度、最大相对厚度位置和后缘相对厚度为输入,以弦长所有位置的厚度为输出;建立翼型的弯度分布模型,弯度分布模型通过弯度分段函数表示,且弯度分段函数以最大相对弯度和最大相对弯度位置为输入,以弦长所有位置的弯度输出;根据厚度分布模型和弯度分布模型,获取同一弦长位置的厚度和弯度,生成目标翼型的上翼面和下翼面的坐标数据。本发明提供的技术方案解决了现有已公开的多种翼型,由于所公开的表示方式都是局部的,并没有公开完整的翼型簇,从而导致采用这些翼型在应用上具有较大局限性的问题。
-
公开(公告)号:CN112052528B
公开(公告)日:2022-04-29
申请号:CN202011028614.2
申请日:2020-09-25
Applicant: 中国直升机设计研究所
IPC: G06F30/15 , G06F30/28 , G06F111/04 , G06F113/08 , G06F119/10
Abstract: 本发明属于直升机气动设计技术领域,公开了一种直升机新型旋翼桨叶气动外形设计方法。针对现有直升机型号和下一代直升机型号对低噪声、高性能旋翼日益迫切的需求,制定优化目标,基于以往的工程设计经验和大量的气动布局参数敏感性分析结果确定优化参数及范围,采用基于代理模型和遗传算法的优化方法,进行多轮旋翼气动布局优化迭代设计和计算,获得满足性能要求的新型旋翼气动外形设计方案。
-
公开(公告)号:CN108051659A
公开(公告)日:2018-05-18
申请号:CN201711251502.1
申请日:2017-12-01
Applicant: 中国直升机设计研究所
IPC: G01R29/26
Abstract: 本发明公开了一种分离提取旋翼噪声的方法,属于直升机噪声试验技术领域。适用于直升机旋翼噪声的分离提取,包括以下步骤:步骤一、获取直升机的旋翼噪声基频、发动机噪声基频和尾桨噪声基频;步骤二、对测量得到的直升机噪声的声压时域信号进行傅里叶变换转化为频域信号;步骤三、选取截止频率进行高通滤波以及选定频率段幅值衰减,从频域信号中剔除环境噪声、发动机噪声和尾桨噪声的影响;步骤四、对处理后的频域信号进行逆傅里叶变换,从而提取得到旋翼噪声的声压时域信号。本发明在频域信号中已经对环境噪声、尾桨噪声和发动机噪声得到衰减剔除,在时域信号中可以明显看到旋翼噪声信号的周期特性,能够简单快速的将旋翼噪声进行提取分离。
-
公开(公告)号:CN112173077A
公开(公告)日:2021-01-05
申请号:CN202011020941.3
申请日:2020-09-25
Applicant: 中国直升机设计研究所
IPC: B64C11/20
Abstract: 本发明属于直升机气动设计技术领域,公开了一种大前后掠组合的直升机旋翼桨叶。述桨叶的根部设有桨根接头,桨根接头有两个纵列式的连接孔,且连接孔的内壁连接有剪力螺栓,桨根接头通过剪力螺栓连接旋翼桨毂支臂。所述桨叶主翼型段起始于相对半径0.2667R,从相对半径0.2667R至桨尖的翼型厚度为7%‑12%。所述直升机旋翼桨叶自旋转中心到相对半径0.2667R的扭转角保持一致,从相对半径0.2667R至桨尖的气动扭转率为X,在保证了旋翼悬停性能的同时兼顾前飞性能。
-
公开(公告)号:CN112173075A
公开(公告)日:2021-01-05
申请号:CN202011028590.0
申请日:2020-09-25
Applicant: 中国直升机设计研究所
Abstract: 本发明属于直升机气动设计技术领域,公开了一种直升机低噪声旋翼桨叶气动外形。桨叶气动外形采用了多段翼型配置、前后掠桨尖构型、桨尖尖削以及负扭转设计,能够有效地降低旋翼气动噪声。在声学风洞开展了该桨叶和基准桨叶噪声测量试验,结果表明,在典型斜下降状态,该桨叶噪声优于基准桨叶,旋翼噪声最大降幅达6分贝,平均降噪幅度接近4分贝。
-
-
-
-
-
-
-
-
-