负压式靶丸拾取器
    81.
    发明授权

    公开(公告)号:CN100427369C

    公开(公告)日:2008-10-22

    申请号:CN200510127382.5

    申请日:2005-12-26

    Abstract: 负压式靶丸拾取器,它涉及一种微小球体的拾取、微操纵装置,本发明的目的是为解决现有技术存在的体积大、使用不方便、灵活性较差的问题。本发明的微型真空泵1和电池盒4固定在壳体10内,手柄横梁3固定在壳体10的上侧,手柄支柱2固定在手柄横梁3和壳体10之间,开关6固定在手柄横梁3上,吸头支座7固定在壳体10和手柄横梁3的前端,转接件8固定在吸头支座7的前侧,吸附头9与转接件8螺纹密封连接,连接管5设置在壳体10内,连接管5的两端分别与微型真空泵1的进气口和转接件8的内腔相连通。本发明的有益效果是:结构小巧,独立使用,不受其它装置的限制;操作简单,灵活性好,不受空间大小的制约;可以单手操作,操作的可靠性高。

    基于球坐标测量原理的高精度球度仪

    公开(公告)号:CN114034247B

    公开(公告)日:2024-11-22

    申请号:CN202111370970.7

    申请日:2021-11-18

    Abstract: 基于球坐标测量原理的高精度球度仪,属于球度精密测量技术领域。它提供一种检测精度高,检测全面的基于球坐标测量原理的高精度球度仪;该高精度球度仪,包括高精度卧式主轴、非接触式位移传感器及高精度气体静压转台;所述非接触式位移传感器通过夹具一安装在高精度卧式主轴上,所述被测工件通过夹具二安装在高精度气体静压转台上,所述高精度卧式主轴的回转轴和高精度气体静压转台的回转轴相互垂直设置,通过控制着两个相互垂直回转轴的旋转运动可以模拟出球面的成型轨迹,用于完成球面的完整测量。本发明具有更好的精度,无需担心测量角度的问题,能适应全球面检测,可以兼顾直径大小不同的工件。

    一种碳化硅陶瓷深小孔的超精密加工方法

    公开(公告)号:CN115194955B

    公开(公告)日:2024-09-17

    申请号:CN202210988689.8

    申请日:2022-08-17

    Abstract: 一种碳化硅陶瓷深小孔的超精密加工方法,属于机械加工技术领域,具体包括以下步骤:步骤一、将碳化硅陶瓷块固定在超声辅助磨削机床上;步骤二、在轴向超声振动作用下加工若干个与刀具同直径的深小孔Ⅰ,并留出余量Ⅰ;刀具进给速度为25‑35mm/min,主轴转速为6000‑10000rpm,在入口处降低进给速度至20mm/min,增大主轴转速至10000rpm;步骤三、在出口处降低进给速度至20mm/min,增大主轴转速至10000rpm,并留出余量Ⅱ;步骤四、在轴向超声振动作用下去除余量Ⅰ和余量Ⅱ,刀具进给速度为15‑20mm/min,主轴转速为8000‑10000rpm,获得碳化硅陶瓷深小孔Ⅱ。

    一种基于EtherCAT总线技术的快刀伺服控制系统和控制方法

    公开(公告)号:CN117311272A

    公开(公告)日:2023-12-29

    申请号:CN202311299947.2

    申请日:2023-10-09

    Abstract: 一种基于EtherCAT总线技术的快刀伺服控制系统和控制方法,属于自动化控制领域,具体方案如下:超精密机床运行前,将G代码文件导入PC中,运行PC中的快刀控制程序将文件中的数据读取并保存到实时域中的结构体数组。机床运行时,其X轴和C轴位置信号被EtherCAT从站模块Ⅱ采集并通过EtherCAT发送至PC中,快刀控制程序将得到的位置信息与结构体数组中的数据比对,找到快刀的位移数据,程序将该数据转化为电压值后传递至EtherCAT从站模块Ⅰ中,随后EtherCAT从站模块Ⅰ输出对应电压,驱动快刀高频位移。本发明提升了快刀的运动控制频率,解决了超精密机床数控系统无法高频控制快刀进行加工的问题。

    一种五轴联动超精密加工检测试件及其检测方法

    公开(公告)号:CN115673868A

    公开(公告)日:2023-02-03

    申请号:CN202211105502.1

    申请日:2022-09-09

    Abstract: 一种五轴联动超精密加工检测试件及其检测方法,属于超精密加工技术领域。本发明通过结构设计使机床的五个轴系在加工过程中必须参与联动,该试件不仅结构形状简单,加工效率高,同时检测方便,可以对五轴联动超精密加工机床的加工精度进行评价。所述试件由从上至下一体连接的偏心球、延长锥体、转接板和安装柱四部分构成;所述安装柱通过快换夹具安装在五轴超精密机床的主轴上,所述偏心球相对于安装柱偏心设置,偏心球与延长锥体同轴设置。本发明能够对五轴联动超精密加工机床的五轴联动加工精度进行快速检测,尺寸更小,加工速度快,效率更高。

    一种自动定位与功率可控的原位激光辅助金刚石切削装置

    公开(公告)号:CN114919084A

    公开(公告)日:2022-08-19

    申请号:CN202210811540.2

    申请日:2022-07-11

    Abstract: 本发明公开一种自动定位与功率可控的原位激光辅助金刚石切削装置,包括调节组件和切削组件,切削组件位于调节组件的出射光路上,调节组件与切削组件电性连接有处理系统;调节组件包括固定滑轨,固定滑轨顶端滑动连接有位置调节部,位置调节部顶端固定连接有激光调节部,切削组件位于激光调节部出射光路上,固定滑轨顶端靠近切削组件一侧固定连接有PSD位置传感器,位置调节部、PSD位置传感器均与处理系统电性连接;切削组件包括固定台,固定台顶端固定连接有力传感器,力传感器顶端固定连接有刀具组件和激光分束部,激光分束部位于激光调节部的出射光路上,激光分束部一侧对应设置有激光功率探头,激光功率探头、力传感器均与处理系统电性连接。

    一种基于球坐标球度仪的高精度球度测量方法

    公开(公告)号:CN114152236A

    公开(公告)日:2022-03-08

    申请号:CN202111372162.4

    申请日:2021-11-18

    Abstract: 一种基于球坐标球度仪的高精度球度测量方法,属于球度精密测量技术领域。包括以下步骤:S1.建立高精度球度仪;S2.调节辅助对心装置上的标准圆柱体的回转轴线与高精度球度仪的高精度卧式主轴回转轴线同轴;S3.利用辅助对心装置使非接触式位移传感器测量轴线与高精度卧式主轴回转轴线垂直相交;S4.使标准球球心在高精度气体静压转台的延长线上;S5.使非接触式位移传感器测量轴线经过标准球球心;S6.使标准球球心在高精度卧式主轴回转轴线的延长线上;S7.换成被测球,根据路径规划即可测量球体的经、纬线、或任意路径的数据。本发明实现了在高精度球坐标球度仪上的空间三维方向的对心,从而进步提高球度测量精度,测量更全面。

    一种五自由度精密测量装置及其控制方法

    公开(公告)号:CN113251907A

    公开(公告)日:2021-08-13

    申请号:CN202110529228.X

    申请日:2021-05-14

    Abstract: 本发明涉及零件测量,更具体的说是一种五自由度精密测量装置及其控制方法。所述控制方法使用控制计算机和网线LAN;利用光栅尺读数头作为位置反馈元件,UMAC控制器将各个光栅尺读数头测得各轴的位移数据与LVDT传感器位移数据相叠加,当LVDT传感器的测头与待测零件的待测表面接触时,LVDT传感器发生位移变化后,UMAC控制器获取和记录LVDT传感器的位移数据并生成位移信号,所述移信号以±10V模拟电压的形式并通过信号放大器连接到模拟电压数据采集模块上,所述的控制计算机通过网线LAN与UMAC控制器双向连接实现总体控制及测量结果显示,可实现对精密复杂微小零件形位误差的测量。

    一种微径铣刀不平衡量修正的微去除逼近方法

    公开(公告)号:CN111571320B

    公开(公告)日:2021-08-03

    申请号:CN202010496823.3

    申请日:2020-06-03

    Abstract: 本发明公开了一种微径铣刀不平衡量修正的微去除逼近方法,所述方法包括如下步骤:(1)搭建微去除逼近系统;(2)将微径铣刀按相位标记装入定相装置中进行逼近旋转运动;(3)定位横向去除位置;(4)进行逼近粗动进给;(5)进行微进给运动,并由控制系统监视微扭力传感器的输出,一经检测到微力信号,则完成此次逼近,将微径铣刀转至去除相位,启动精密去除旋转电机,实现微去除程序;(6)未能实现逼近,则退回初始位置,再启动纵向宏动精密运动平台进行柔性铰链微动工作台一半行程的粗动进给,之后再次启动(4)的过程,直至逼近成功。本发明可实现修正过程的弱刚度逼近及修正过程的大刚度去除,从而实现高分辩力高精度的修正微去除。

    一种基于超精密铣削工艺的光栅尺误差补偿方法

    公开(公告)号:CN111546134B

    公开(公告)日:2021-08-03

    申请号:CN202010302054.9

    申请日:2020-04-16

    Abstract: 一种基于超精密铣削工艺的光栅尺误差补偿方法,属于光栅尺测量技术领域。建立铣削平面误差条纹模型,加工多个不同角度的平面,并进行表面形貌检测,将检测结果与模型对比,判断正弦性,确定机床光栅尺误差的同步位置,确定补偿相位值,确定补偿量;确定补偿计算式,建立误差补偿表,进行变换补偿。本发明可以有效地识别因光栅尺误差而产生的表面条纹,识别光栅尺误差,大幅度提高了切削表面质量,有效地降低了工件表面粗糙度;补偿后机床加工零件的表面粗糙度值是未补偿表面的50%~60%,表面质量提高1~2倍。

Patent Agency Ranking