-
公开(公告)号:CN102530850A
公开(公告)日:2012-07-04
申请号:CN201210066852.1
申请日:2012-03-14
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 一种采用AFM探针纳米刻划加工毫米尺寸微纳结构的方法。本发明属于毫米尺寸微纳结构加工领域。该方法能够在较低成本下解决毫米尺寸、纳米精度微纳结构的加工问题。方法一:首先将待加工样品置于X-Y二维精密工作台上,通过AFM系统的逼近过程使AFM探针以小于1μN的垂直载荷接触待加工样品的表面;加工纳米线振列结构,设定加工长度、加工宽度、加工间距、加工方向、垂直载荷及加工速度的参数值。方法二与一不同的是:加工由多个相同微结构组合而成的阵列微结构;首先设定加工参数,加工时,由扫描陶管带动AFM探针运动,从而实现方形、圆形或等边三角形阵列微结构的加工。本发明采用AFM探针纳米刻划加工待加工样品的毫米尺寸微纳结构。
-
公开(公告)号:CN101003356B
公开(公告)日:2011-01-05
申请号:CN200710071628.0
申请日:2007-01-12
Applicant: 哈尔滨工业大学
IPC: B82B3/00
Abstract: 基于原子力显微镜恒高模式的纳米微小结构加工方法,本发明涉及纳米量级微小结构的加工方法。它克服了现有的AFM的纳米微小结构加工方法加工深度不可人为设定以及所能精确加工的尺寸范围非常有限的缺陷。本发明系统增加了三维微动工作台控制电路和三维微动工作台,本方法的主单片机通过三维微动工作台控制电路驱动三维微动工作台完成高度方向上的运动,使探针的针尖刺入被加工工件表面;探针所受反作用力在悬臂上产生的变形量被光杠杆测角装置检测到并传送给主单片机,三维微动工作台持续进行高度方向上的进给,直到用户的加工深度设定值等于三维微动工作台高度方向上的进给量减去悬臂上产生的变形量,直到刻划工作结束。
-
公开(公告)号:CN1225607C
公开(公告)日:2005-11-02
申请号:CN03111605.1
申请日:2003-05-01
IPC: F16F7/00
Abstract: 多自由度超低频精密隔振系统,它涉及一种机械式隔振系统。它由水平隔振装置(A)、垂直隔振装置(B)、水平设置的隔板(C)、位于隔板(C)上方水平设置的台面板(D)组成,至少三个垂直隔振装置(B)支撑在隔板(C)的下面,在隔板(C)的上面设有至少三个水平隔振装置(A),水平隔振装置(A)支撑在台面板(D)的下面。它解决了现有隔振系统存在的固有频率较高、机动性能低、适应能力差的问题。本发明为精密工程领域设计研制一套廉价、可靠、机动性能好、适应能力强、隔振能力优于空气弹簧的超低频多自由度隔振系统。其垂直方向和水平方向的固有频率皆<0.5Hz,阻尼比>0.1。
-
公开(公告)号:CN102583229B
公开(公告)日:2014-07-30
申请号:CN201210066835.8
申请日:2012-03-14
Applicant: 哈尔滨工业大学
IPC: B81C1/00
Abstract: 面向微结构制造具有力反馈控制的微探针刻划加工方法。本发明属于微纳结构加工技术领域。本发明可以实现低成本、高精度、微米尺度沟槽等复杂微结构的加工。方法是:先将工件放置于X-Y向精密工作台上,根据所设定的力初值,简称设定值,使微探针刀具自动逼近工件表面并维持一个恒定的力F,该恒定的力F的初值为5-20mN,当微探针刀具与工件表面接触后,开始刻划加工,启动力闭环控制模块,Z向微动工作台上下移动,实现垂直力的实时闭环控制,X-Y向精密工作台带动工件做精密移动,实现微沟槽结构的加工;微沟槽结构加工好后,力闭环控制结束,微探针刀具由Z向粗动工作台带动向上移动脱离工件表面,加工结束。本发明用于加工工件的微沟槽结构。
-
公开(公告)号:CN101659020B
公开(公告)日:2011-06-22
申请号:CN200910072872.8
申请日:2009-09-14
Applicant: 哈尔滨工业大学
IPC: B24B3/00
Abstract: 一种适合于金刚石刀具制造的热-机耦合刃磨工艺,它涉及一种适合于金刚石刀具制造的刃磨工艺。本发明解决了现有的金刚石刀具的机械刃磨工艺无法解决金刚石刀具刃口锋利度优于10nm的问题。本发明的方法步骤为:调节金刚石刀具刃磨机床平衡;钢制研磨盘工作表面经过精车成形后热处理,并精细抛光,达到镜面效果;对研磨机床主轴系统进行精细动平衡;装卡金刚石刀具,刀体卡具调水平;打开气源,开启金刚石刀具刃磨机床电源,调节机床主轴转速;调整前刀面刃磨方向为易磨方向,调节刀具前角;在研磨速度为33.96m/s、研磨压力为5.95N、研磨时间为5min的条件下刃磨刀具。本发明具有刃磨工艺简单、成本低、效率高的特点,可刃磨出优于10nm刃口锋利度的金刚石刀具。
-
公开(公告)号:CN100561179C
公开(公告)日:2009-11-18
申请号:CN200610151235.6
申请日:2006-12-31
Applicant: 哈尔滨工业大学
IPC: G01N3/40
Abstract: 基于AFM的纳米机械性能检测装置,它涉及的是纳米机械性能检测的技术领域。它是为解决现有测量方法存在其检测设备价格昂贵,现有的AFM系统不能够直接提供反映表面机械性能的压痕过程曲线及不能测量按一定速率加载的刻划过程的摩擦力信号的问题。主控计算机(1)通过串行通信电路(2)、第一单片机(4)、光电隔离电流环串行接口通道(8)、第三单片机(11)、三路D/A转换电路(12)及第二单片机(9)、两路A/D转换电路(10)分别连接二维工作台控制器(13)、二维工作台(14)与AFM系统(15)。它还具有制造成本价格便宜,能够直接提供反映表面机械性能的压痕过程曲线及能按一定速率加载的刻划过程的摩擦力信号。点阵压痕的最大范围为100μm×100μm,刻划长度为100nm~100μm。
-
公开(公告)号:CN101003356A
公开(公告)日:2007-07-25
申请号:CN200710071628.0
申请日:2007-01-12
Applicant: 哈尔滨工业大学
IPC: B82B3/00
Abstract: 基于原子力显微镜恒高模式的纳米微小结构加工方法,本发明涉及纳米量级微小结构的加工方法。它克服了现有的AFM的纳米微小结构加工方法加工深度不可人为设定以及所能精确加工的尺寸范围非常有限的缺陷。本发明系统增加了三维微动工作台控制电路和三维微动工作台,本方法的主单片机通过三维微动工作台控制电路驱动三维微动工作台完成高度方向上的运动,使探针的针尖刺入被加工工件表面;探针所受反作用力在悬臂上产生的变形量被光杠杆测角装置检测到并传送给主单片机,三维微动工作台持续进行高度方向上的进给,直到用户的加工深度设定值等于三维微动工作台高度方向上的进给量减去悬臂上产生的变形量,直到刻划工作结束。
-
公开(公告)号:CN1564094A
公开(公告)日:2005-01-12
申请号:CN200410013615.4
申请日:2004-03-15
Applicant: 哈尔滨工业大学
IPC: G05B19/18 , G05B19/408 , G05B15/02
Abstract: 微机械零件三维加工方法,它属于一种超精密加工方法。现有诸多微机械零件的加工方法存在只能加工准三维结构等弊端。本发明两种方法都需结合现有的微机械零件三维加工装置来实现:依次设置扫描探针显微镜等的工作参数,将样品放在三维工作台上,通过控制工作台X、Y向运动开始加工第一个图形;当加工完第一个图形后抬起探针,工作台作二维移动后开始加工下一个图形,直到加工完所有的图形。另一种方法是,三维工作台按预先设置的值在X、Y、Z向移动,一次加工完全部图形后,通过扫描陶管作收缩运动抬起探针,结束加工。本发明方法可以进行真正的三维加工,去除量在纳米量级,对表面的破坏极小,它可以应用于MEMS器件、掩膜和微小模具的制造。
-
公开(公告)号:CN1554578A
公开(公告)日:2004-12-15
申请号:CN200310107767.6
申请日:2003-12-19
Applicant: 哈尔滨工业大学
Abstract: 纳米碳管针尖的制备方法,它属于纳米器件制造的技术领域,具体涉及的是一种制备纳米碳管探针针尖的方法。它的步骤是:一、在双面导电胶带(5)上粘上经CVD法制备的多壁纳米碳管团(3),在双面导电胶带(6)上粘上普通硅针尖(4);二、使(4)的首端(4-1)与(3)中突出在最前面的一根纳米碳管(3-2)的尖端(3-1)之间的距离设在≤2微米;三、在(5)、(6)之间施加30~60交直流电压(V2),首端(4-1)与尖端(3-1)之间放电产生电弧,在纳米碳管(3-2)壁上有缺陷的位置由于电弧作用被氧化而截断,其尖端(3-1)粘到普通硅针尖(4)的首端(4-1)上;四、撤除电压(V2),即制成纳米碳管针尖。本发明能明显减少制备纳米碳管针尖的难度和成本,而且容易控制。
-
公开(公告)号:CN102303224B
公开(公告)日:2013-09-04
申请号:CN201110145033.1
申请日:2011-05-31
Applicant: 哈尔滨工业大学
Abstract: 一种光学零件加工与检测一体化制造装置及制造方法,属于光学零件加工领域,本发明为解决现有光学零件加工大多采用离线测量方式,加工效率低;现有的光学零件加工设备无法满足在线测量的要求的问题。本发明的工件主轴、刀具主轴和剪切干涉仪安装在加工机床的工作台面上,工件主轴上安装工件,刀具主轴通过摆臂及刀架安装刀具,数控系统驱动刀具主轴旋转,带动刀具对工件进行加工,剪切干涉仪发出的检测光束的光轴与工件主轴的中心线在同一直线上,剪切干涉仪发出检测光束至工件,剪切干涉仪采集检测光束返回的图像信息发送给测量信息处理系统,测量信息处理系统根据获取工件表面的面形误差信息,并发送给数控系统,数控系统对工件进行补偿加工。
-
-
-
-
-
-
-
-
-