-
公开(公告)号:CN106323155B
公开(公告)日:2019-08-27
申请号:CN201510392361.X
申请日:2015-07-06
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01B7/16
Abstract: 本发明提供一种耦合谐振的谐振式应变传感器,包括两根敏感梁,各敏感梁的两端被固定支撑;检测梁,连接于所述两根敏感梁之间;其中,所述敏感梁工作于对应力敏感的横振动模态,检测梁工作于整体压阻效应显著的纵振动模态,敏感梁与检测梁形成耦合谐振,外加驱动使整个结构以耦合谐振频率振动,敏感梁中的应力会改变敏感梁的共振频率,整个结构的耦合谐振频率随之改变,利用检测梁的压阻效应测量耦合谐振频率就可以测得应力值,并进而计算得到应变。本发明的耦合谐振的谐振式应变传感器具有可采用高温工艺真空封装、高Q值、高分辨率、高灵敏度、长期稳定性好等优点,在应力检测领域具有广泛的应用前景。
-
公开(公告)号:CN106915723A
公开(公告)日:2017-07-04
申请号:CN201510998013.7
申请日:2015-12-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: B81C1/00
CPC classification number: B81C1/0015
Abstract: 本发明提供一种基于激光结合各向异性腐蚀的梁-质量块结构的制备方法,包括以下步骤:1)提供(111)硅片;2)采用激光加工工艺在所述(111)硅片背面形成第一深槽;3)在所述(111)硅片正面形成第二深槽;4)在所述(111)硅片表面、所述第一深槽及所述第二深槽侧面及底部形成第一氧化层;5)在所述(111)硅片正面形成第三深槽;6)在所述第一氧化层表面及所述第三深槽的侧面及底部形成第二氧化层;7)采用反应离子刻蚀工艺及各向异性腐蚀工艺释放梁。采用激光加工工艺结合反应离子刻蚀工艺及各向异性腐蚀工艺形成梁-质量块结构,可降低整个工艺的成本;梁结构的厚度由从(111)硅片正面进行的深反应离子刻蚀决定,工艺精度高。
-
公开(公告)号:CN106841396A
公开(公告)日:2017-06-13
申请号:CN201510881188.X
申请日:2015-12-03
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01N29/14
CPC classification number: G01N29/14
Abstract: 本发明提供一种硅基电容式声发射传感器及其制备方法,包括:声发射敏感膜;停靠环,位于声发射敏感膜的下表面;边框,位于声发射敏感膜外围,且与声发射敏感膜相隔一定的间距;边框的上表面设有上电极,下表面设有第一绝缘层;支撑膜,位于声发射敏感膜与边框之间;下电极硅片,下表面设有下电极,上表面设有第二绝缘层;第二绝缘层与第一绝缘层上下对应,且通过焊料层焊接在一起。支撑膜在大气压作用下变形,使得停靠环贴置于下电极硅片的上表面,声发射信号可以较好地耦合到声发射敏感膜上;在大气压作用下停靠环贴置于下电极硅片的上表面之后,声发射敏感膜与下电极硅片之间形成亚微米/纳米间隙,可极大地提高传感器的灵敏度。
-
公开(公告)号:CN104819789B
公开(公告)日:2017-05-24
申请号:CN201510073321.9
申请日:2015-02-10
Applicant: 华进半导体封装先导技术研发中心有限公司 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种应力传感器,所述应力传感器包括:衬底,所述衬底具有第一凹槽;第一压阻层,覆盖所述第一凹槽内壁及部分衬底上表面,所述第一压阻层通过第一绝缘层与所述衬底隔离;第一传递层,填充满所述第一凹槽,且具有两个第三凹槽,所述两个第三凹槽沿所述第一凹槽槽长方向平行排列,所述第一传递层通过第二绝缘层与所述第一压阻层隔离;第一隔离层,填充满所述第三凹槽,所述第一隔离层通过第三绝缘层与所述第一传递层隔离;第一电极对,第二电极对,位于衬底上表面的所述第一压阻层上,所述第一电极对位于第一凹槽槽长延长线上,所述第二电极对位于所述第一凹槽槽宽延长线上,能够实现对非芯片上表面内应力分量的测量。
-
公开(公告)号:CN104819789A
公开(公告)日:2015-08-05
申请号:CN201510073321.9
申请日:2015-02-10
Applicant: 华进半导体封装先导技术研发中心有限公司 , 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开了一种应力传感器,所述应力传感器包括:衬底,所述衬底具有第一凹槽;第一压阻层,覆盖所述第一凹槽内壁及部分衬底上表面,所述第一压阻层通过第一绝缘层与所述衬底隔离;第一传递层,填充满所述第一凹槽,且具有两个第三凹槽,所述两个第三凹槽沿所述第一凹槽槽长方向平行排列,所述第一传递层通过第二绝缘层与所述第一压阻层隔离;第一隔离层,填充满所述第三凹槽,所述第一隔离层通过第三绝缘层与所述第一传递层隔离;第一电极对,第二电极对,位于衬底上表面的所述第一压阻层上,所述第一电极对位于第一凹槽槽长延长线上,所述第二电极对位于所述第一凹槽槽宽延长线上,能够实现对非芯片上表面内应力分量的测量。
-
公开(公告)号:CN103557890A
公开(公告)日:2014-02-05
申请号:CN201310574689.4
申请日:2013-11-15
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种多层多采集点的起重机械结构健康监测系统。所述多层多采集点的起重机械结构健康监测系统至少包括:分别设置在起重机械不同位置的多个传感器;分别设置在起重机械一关键位置的多个数据采集结点,每一数据采集结点均与各自所在位置附近的至少一个传感器连接,用于存储来自传感器的信息和/或对来自传感器的信息进行预分析以确定起重机械是否有异常;其中,每一数据采集结点包括无线通讯模块和有线通讯模块中的一种;以及设置在所述起重机械的状态结点分析中心,用于与各数据采集结点通信以及对来自各数据采集结点的信息进行分析以确定所述起重机械的结构健康状况。本发明能实时在线监测并评价起重机械健康状况,提高了起重机械使用的安全性。
-
公开(公告)号:CN103107129A
公开(公告)日:2013-05-15
申请号:CN201310064231.4
申请日:2013-02-28
Applicant: 中国科学院上海微系统与信息技术研究所 , 湖州中微科技有限公司
IPC: H01L21/768
Abstract: 本发明提供一种微孔金属填充结构及方法,该填充结构包括密封腔、三明治结构;密封腔包括进出气孔;密封腔围成有容纳液态金属槽的空间;三明治结构包括由上至下依次叠加阻挡片、填充基片和喷嘴片;填充基片上设有填充微孔;喷嘴片上设有与填充微孔垂直对应的喷嘴孔;阻挡片与填充基片之间设有第一间隙;填充基片与喷嘴片之间设有第二间隙;喷嘴孔最窄处的半径小于填充微孔的半径的1/2以上;三明治结构的侧壁全部嵌入到密封腔内;喷嘴片的下表面在金属填充时紧贴液态金属槽的上表面。本发明利用压力差将液态金属槽中的金属吸入微米级别的填充微孔中,依据表面张力原理将已填充在微孔中的金属与金属槽在喷嘴孔中切断,填充速度快,时间短,准确度高。
-
公开(公告)号:CN101565162B
公开(公告)日:2013-03-06
申请号:CN200910052443.4
申请日:2009-06-03
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及利用阶梯形电极实现纳米梁驱动与压阻检测结构及方法。其特征在于纳米梁上部的金属电极为阶梯形,电极两端与纳米梁间的间隙小于100纳米,而中间部分的电极间隙在1-2微米。所述的阶梯形电极两端与纳米梁形成MIS电容结构。当阶梯形电极与纳米梁间的电压超过MIS电容的阈值电压时,MIS电容下的空间电荷区达到最大值,空间电荷区下的电阻仅为应力的函数,可以用于纳米梁的压阻检测。阶梯形电极的中心部分由于间隙大,对纳米梁的电阻值影响小,中心部分对纳米梁的驱动效率高,用于对纳米梁实现静电驱动。
-
公开(公告)号:CN101062761A
公开(公告)日:2007-10-31
申请号:CN200610148119.9
申请日:2006-12-27
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: B81C1/00
Abstract: 本发明涉及一种用湿法腐蚀工艺制作截面为直角三角形的纳米梁加工方法,其特征在于利用(100)晶向硅材料各向异性腐蚀特性,纳米梁形成后腐蚀即自动停止;形成梁的横截面为直角三角形,所述直角三角形的斜而为(111)面,侧面是(110)面,底面是(100)面,梁的斜面和底面宽度由梁的高度决定,是用氧化法进行控制的。本发明巧妙利用各向异性干法腐蚀特性和硅各向异性湿法腐蚀特性,只需一块光刻版就可实现纳米梁结构的加工。
-
公开(公告)号:CN1792765A
公开(公告)日:2006-06-28
申请号:CN200510112436.0
申请日:2005-12-30
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明涉及一种在SOI硅片上纳米宽度谐振结构及制作方法,其特征在于巧妙利用了(110)晶向硅片的各向异性湿法腐蚀特性,通过精确控制光刻掩模图形与(112)晶向间夹角,利用各向异性湿法腐蚀会自动校准晶向、同时结合腐蚀液对(111)晶面的低速腐蚀减小宽度,在(110)绝缘体上硅的硅片上制作出宽度小于光刻最小线宽、侧壁为(111)晶面的纳米梁结构,通过浓硼自终止技术很好地控制锚点和驱动电极的形貌。利用本发明可以制成宽度小于100纳米的纳米梁,在纳米梁两侧制作驱动/敏感电极,从而实现纳米谐振结构。由于各向异性湿法腐蚀对硅(111)晶面的腐蚀速率慢,可以通过控制腐蚀时间实现对纳米梁宽度的较精确控制。
-
-
-
-
-
-
-
-
-