-
公开(公告)号:CN113254632A
公开(公告)日:2021-08-13
申请号:CN202110437683.7
申请日:2021-04-22
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了基于事件检测技术的时间线摘要自动生成方法,包括:S10、将新闻文本集合进行聚类,得到新闻事件的子事件文档集合,每个子事件文档集合对应一个子事件;S20、获取每个子事件文档集合的摘要;S30、对所述子事件进行筛选,自动确定时间线摘要长度L′,以及对应的L′个子事件;S40、获取所述L′个子事件对应的子事件文档集合的摘要,按照日期先后顺序对所述摘要进行排序,输出带有时间戳的摘要序列。以及,基于事件检测技术的时间线摘要自动生成装置,电子设备和存储介质。本发明具有能自动确定时间线摘要的长度,灵活性强,能够处理动态变化的新闻事件等优点。
-
公开(公告)号:CN107577782B
公开(公告)日:2021-04-30
申请号:CN201710827978.9
申请日:2017-09-14
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/335 , G06F16/33 , G06F16/9535
Abstract: 本发明公开了一种基于异质数据的人物相似度刻画方法,属于数据挖掘领域。本发明首先搜集用户的微博文本,获取用户之间的关注关系以及各用户的基本信息,针对不同类型数据的特点个性化选择处理方式,并对于微博文本采用Doc2vec模型,结合上下文信息将文本表示成向量,再根据定义的相似度函数衡量相似度,最后将不同维度得到的矩阵进行融合,刻画用户最终的相似度。本发明引入了多种社交网络信息,包括社交关系数据、用户属性数据和用户文本数据等,通过对不同类型的信息加以综合考虑,以得到更全面的人物相似度刻画方法;同时本发明提供了对于多种数据的处理和计算方案,利用完整的数据和加权融合方法,个性化计算不同偏好的人物相似度。
-
公开(公告)号:CN109960756B
公开(公告)日:2021-04-09
申请号:CN201910207437.5
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/953 , G06F16/34 , G06F16/35 , G06F40/211
Abstract: 本发明公开了一种新闻事件信息归纳方法,包括:收集新闻素材,创建新闻库;从新闻库中获取目标事件的所有新闻文本,并进行热度分析,获取拐点新闻文本,抽取所述拐点新闻文本中的事件信息并保存;其中,获取拐点新闻文本的方法包括:统计所有新闻文本的热度值,按照新闻文本发布的时间顺序排序,构建热度值随时间变化的曲线图,取曲线图的所有极大点对应的新闻文本,即为所述拐点新闻文本,所述热度值为新闻的页面浏览量和网站独立访客量之和。本发明的方法通过选择对于目标新闻事件处于关键节点时的新闻文本——即拐点新闻文本进行摘要分析处理,准确地反映了新闻事件的发展态势。
-
公开(公告)号:CN108470046B
公开(公告)日:2020-12-01
申请号:CN201810184478.2
申请日:2018-03-07
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/9535 , G06F16/34
Abstract: 本发明涉及计算机技术领域,具体提供了一种基于新闻事件搜索语句的新闻事件排序方法及系统,旨在解决在考虑用户主观信息的情况下,如何实现新闻事件排序的技术问题。为此目的,本发明中的新闻事件排序方法,能够通过预设的新闻事件排序模型对预先获取的新闻事件搜索语句进行识别,得到按照相关度大小排序的新闻事件排序结果。其中,新闻事件搜索语句包含能够表征用户情感倾向的用户主观信息。基于此,本发明能够结合用户对新闻事件的情感倾向,按照新闻事件与用户偏好相关程度进行排序,从而提高新闻事件排序结果的准确性。同时,本发明中的系统能够执行并实现上述方法。
-
公开(公告)号:CN111737590A
公开(公告)日:2020-10-02
申请号:CN202010442783.4
申请日:2020-05-22
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/33
Abstract: 本发明公开了社交关系挖掘方法、装置、电子设备以及存储介质。所述方法包括:获取群组的对话流数据;将所述对话流数据划分为多个对话队列,其中,各对话队列的时间跨度小于或等于时间阈值;根据各对话队列中对话信息的上下文相关度,确定构成真实对话场景的对话队列;提取所述构成真实对话场景的对话队列所对应的用户,作为具有社交关系的用户。基于该方法及装置,可以还原对话场景,进而更加精准地映射对话用户,挖掘用户社交关系。
-
公开(公告)号:CN111737551A
公开(公告)日:2020-10-02
申请号:CN202010452949.0
申请日:2020-05-26
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/953 , G06F16/951 , G06N3/08 , G06N3/04
Abstract: 本发明公开一种基于异构图注意力神经网络的暗网线索检测方法:步骤一、对暗网进行文本采集;步骤二、针对采集到的暗网文本信息,进行事件标题、关键词及实体提取,构建动态异构信息网络;步骤三、对构建的异构信息网络中的节点进行embedding处理,并得到各节点的特征向量;步骤四、对异构信息网络的图结构进行学习;步骤五、根据对异构信息网络的图结构学习得到的结果,对异构信息网络中的节点进行线索类别分类,从而完成对暗网信息的线索检测。本发明利用了外部知识库作为依托,并且采用了两套方法来对构建的异构信息网络的图结构进行学习,具有良好的线索检测效果。
-
公开(公告)号:CN111581370A
公开(公告)日:2020-08-25
申请号:CN202010310036.5
申请日:2020-04-20
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
IPC: G06F16/335 , G06F16/951 , G06F16/9536 , G06F40/242 , G06Q10/06 , G06Q50/00
Abstract: 本发明公开了一种综合多通道数据来源的网络舆情热度评估方法,包括:步骤一、收集各通道的流数据;步骤二、量化流数据对于目标事件的敏感值和情绪标签;步骤三、基于敏感度和影响力量化得到主体指标值;步骤四、基于敏感消息数、各类情绪标签对应的消息数,量化得到内容指标值;步骤五、基于每日的消息数、用户数、群组数,量化得到传播指标值;步骤六、基于主体指标值、内容指标值、传播指标值,量化得到各通道的综合热度值,并计算得到目标事件当日的总热度值。本方法建立了普适的网络舆情热度评估指标体系,评估结果更准确全面。本发明还公开了一种综合多通道数据来源的网络舆情热度评估装置,本装置对网络舆情热度的评估更准确全面。
-
公开(公告)号:CN110990711A
公开(公告)日:2020-04-10
申请号:CN201910392858.X
申请日:2019-05-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京蓝光汇智网络科技有限公司
IPC: G06F16/9536 , G06F16/958 , G06Q50/00 , G06N20/00
Abstract: 本发明公开了基于机器学习的微信公众号推荐算法,包括:为训练文本标注标签,获取训练文本的关键词及关键词向量,对关键词向量进行聚类计算,获得簇,并确定簇的中心向量;采集公众号文本,获取公众号文本的关键词及关键词向量,根据关键词向量与中心向量的相似度确定公众号文本对应的标签,获得标签分析结果;根据目标用户的历史行为确定目标用户的喜好标签;从标签分析结果中选取与喜好标签相关的标签,将相关的标签对应的公众号文本推荐给目标用户。本发明还提供了基于机器学习的微信公众号推荐系统。本发明能够根据分析用户喜好,进而自动推荐合适的公众号,避免用户受各种良莠不齐的公众号干扰,避免花费过多时间用于挑选公众号文章。
-
公开(公告)号:CN110413784A
公开(公告)日:2019-11-05
申请号:CN201910666645.1
申请日:2019-07-23
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于知识图谱的舆情关联分析方法,包括:提取互联网舆情知识中实体的属性和关系,基于知识图谱构建舆情业务知识库;确定需要关联分析的多个相同或不同类型的实体,采用相交、合并或者消减的方式对多个相同或不同类型的实体进行组合;确定多个相同或不同类型的实体每种组合方式进行关联分析的结果构成,得到分析结果。本发明还提供一种基于知识图谱的舆情关联分析系统。本发明可以实现包括特定人物、特定组织、特定事件、特定专题等在内的相同类型或不同类型知识的关联分析,并实现关联实体的多维度深度分析和关联挖掘,帮助业务用户准确掌握各类不同群体的关联情况,以及关联实体的全方位智能分析结果,进而辅助决策。
-
公开(公告)号:CN109977219A
公开(公告)日:2019-07-05
申请号:CN201910207415.9
申请日:2019-03-19
Applicant: 国家计算机网络与信息安全管理中心 , 北京航空航天大学
Abstract: 本发明公开了基于启发式规则的文本摘要自动生成方法,包括:S1、以文本的段落、句子顺序作为启发式语序,将新闻正文分为开始段落、中间段落和结尾段落,并以句子和片段为粒度对各段落进行启发式分割;S2、先以句子为粒度,分别抽取各段落的目标句子,得到各段落的句子摘要集合,再以所述句子摘要集合中的片段为粒度,分别抽取各段落的目标片段,得到各段落的片段摘要集合;S3、去除所述片段摘要集合中的冗余片段,将筛选出的片段按照片段出现的顺序组合,生成文本摘要。以及,基于启发式规则的文本摘要自动生成装置。采用本发明的方法生成的文本摘要的句子组织连贯性好,可读性强。
-
-
-
-
-
-
-
-
-