基于机器学习的微信公众号推荐方法及系统

    公开(公告)号:CN110990711B

    公开(公告)日:2023-05-12

    申请号:CN201910392858.X

    申请日:2019-05-13

    Abstract: 本发明公开了基于机器学习的微信公众号推荐算法,包括:为训练文本标注标签,获取训练文本的关键词及关键词向量,对关键词向量进行聚类计算,获得簇,并确定簇的中心向量;采集公众号文本,获取公众号文本的关键词及关键词向量,根据关键词向量与中心向量的相似度确定公众号文本对应的标签,获得标签分析结果;根据目标用户的历史行为确定目标用户的喜好标签;从标签分析结果中选取与喜好标签相关的标签,将相关的标签对应的公众号文本推荐给目标用户。本发明还提供了基于机器学习的微信公众号推荐系统。本发明能够根据分析用户喜好,进而自动推荐合适的公众号,避免用户受各种良莠不齐的公众号干扰,避免花费过多时间用于挑选公众号文章。

    基于机器学习的微信公众号推荐算法及系统

    公开(公告)号:CN110990711A

    公开(公告)日:2020-04-10

    申请号:CN201910392858.X

    申请日:2019-05-13

    Abstract: 本发明公开了基于机器学习的微信公众号推荐算法,包括:为训练文本标注标签,获取训练文本的关键词及关键词向量,对关键词向量进行聚类计算,获得簇,并确定簇的中心向量;采集公众号文本,获取公众号文本的关键词及关键词向量,根据关键词向量与中心向量的相似度确定公众号文本对应的标签,获得标签分析结果;根据目标用户的历史行为确定目标用户的喜好标签;从标签分析结果中选取与喜好标签相关的标签,将相关的标签对应的公众号文本推荐给目标用户。本发明还提供了基于机器学习的微信公众号推荐系统。本发明能够根据分析用户喜好,进而自动推荐合适的公众号,避免用户受各种良莠不齐的公众号干扰,避免花费过多时间用于挑选公众号文章。

    基于微信群信息的数据分析系统

    公开(公告)号:CN108880980A

    公开(公告)日:2018-11-23

    申请号:CN201810403059.3

    申请日:2018-04-28

    Abstract: 本发明公开一种基于微信群信息的数据分析系统,包括:信息采集模块,其每隔预设时间按发送顺序采集一批预设数量的微信群消息的html标签;数据分析模块,其将信息采集模块采集到的html标签通过正则解析得出其中包含的每条群消息的属性,所述群消息属性包括群编号、群消息编号;缓存去重模块,其将每条群消息属性包含的群编号和群消息编号进行哈希运算得到哈希值,再将相邻两批次中的每条群消息的哈希值对比,若有重复部分,则将后一批次中哈希值重复的群消息删除;多媒体提取模块;对象存储模块;关键词提取模块;群消息库模块。本发明具有能将采集到的微信群消息数据进行分析和统计,最后直观的展示出来,可以有效、直观的监测微信群的优点。

    基于社交应用采集资源管理和检测使用的系统和方法

    公开(公告)号:CN118708795A

    公开(公告)日:2024-09-27

    申请号:CN202410729579.9

    申请日:2024-06-06

    Abstract: 本发明公开了基于社交应用采集资源管理和检测使用的系统,包括:采集资源调度装置,其用于存储、初始化和分配采集资源;数据采集调度装置,其用于采集资源的申请与使用;采集资源状态收集装置,其用于存储使用完成的采集资源状态,并对采集资源进行分类;异常采集资源处理装置,其用于对异常采集资源进行删除、刷新和验证操作,并将刷新和验证后的采集资源更新到采集资源调度装置中;采集资源检测装置,其用于对采集资源调度装置中的采集资源进行可用性检测,并将不可用资源更新到采集资源状态收集装置中;以及,基于社交应用采集资源管理和检测使用的方法。本发明具有能确保采集资源可以得到最大化的利用,保障数据采集长期有效的完成等优点。

    一种基于自注意力的观点及其持有者的联合抽取方法

    公开(公告)号:CN108628828B

    公开(公告)日:2022-04-01

    申请号:CN201810347840.3

    申请日:2018-04-18

    Abstract: 本发明一种基于自注意力的观点及其持有者的联合抽取方法:S1.构建提取观点及其持有者的语料集;S2.识别包含观点的语句;S3.联合抽取观点及其持有者。本发明优点:1、文本分类模型避免了抽取出的句子不包含观点的情况;2、观点及其持有者联合抽取模型摆脱了词性标注、命名实体识别和句法依存分析等自然语言处理环节,避免这些环节出现误差对模型提取效果的影响,且该模型有很高灵活度和覆盖面;3、本发明包含构建提取观点及其持有者的语料集,识别包含观点的语句,联合抽取观点及其持有者。4、本发明在双向LSTM的基础上使用self‑attention有效结合两者优点,使词语序列的表示语义更丰富,训练的模型准确率更高。

Patent Agency Ranking