-
公开(公告)号:CN107824962B
公开(公告)日:2020-06-16
申请号:CN201711252672.1
申请日:2017-12-01
Applicant: 哈尔滨工业大学(威海)
IPC: B23K26/122 , B23K26/348 , B23K26/70
Abstract: 一种水下激光熔覆和激光‑电弧复合焊接的双层排水装置,涉及水下激光熔覆和激光‑电弧复合焊接领域,包括上端盖、内层排水筒、外层排水筒和排水密封垫,上端盖上设有焊接口,焊接口上设有玻璃板,外层排水筒、内层排水筒和上端盖围成外排水腔,内层排水筒和上端盖围成内排水腔,上端盖上呈圆形阵列有至少三个内排水腔进气口,外层排水筒上部周向均布至少三个外排水腔进气口;排水密封垫设在外层排水筒下端,排水密封垫上设有呈环形的柔性橡胶裙衬套;外层排水筒下部设有焊接辅助接头。本发明结构巧妙、使用方便、适应性强,可完成水下激光熔覆或水下激光‑电弧复合焊接工作,提高水下激光焊接工作效率和质量。
-
公开(公告)号:CN111269028A
公开(公告)日:2020-06-12
申请号:CN202010146104.9
申请日:2020-03-05
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明提供一种氮化硅陶瓷表面金属化方法,其解决了传统的氮化硅陶瓷表面金属化方法处理工艺复杂、对设备要求较高、成本普遍较高、陶瓷表面金属化层质量不稳定的技术问题,其包括以下步骤,将氮化硅陶瓷表面打磨、抛光,将铝粉和硅粉进行机械球磨混合,然后将上述混合粉末放入干燥箱进行烘干处理,得到金属化粉末,铝粉与硅粉的质量比为(1:4)-(9:1),将配置好的金属化粉末均匀涂覆在氮化硅陶瓷基材的表面,金属化粉末厚度在100μm-300μm之间,在真空或氩气惰性气体保护气氛下,对氮化硅陶瓷表面进行激光熔覆处理。该发明可广泛应用于氮化硅陶瓷表面的金属化处理。
-
公开(公告)号:CN111192831A
公开(公告)日:2020-05-22
申请号:CN202010146121.2
申请日:2020-03-05
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明公开了一种用于高导热氮化硅陶瓷基板的表面金属化方法及其封装基板,包括下述步骤:对高导热氮化硅陶瓷封装基板和无氧铜进行离子轰击表面活化处理;采用真空磁控溅射方式,在活化的高导热氮化硅陶瓷封装基板和无氧铜的表面沉积纳米级厚度的金属层;将沉积金属层的高导热氮化硅陶瓷封装基板和无氧铜置于真空环境下相互贴合,并施加压力,实现室温直接键合。本发明方法制备得到的封装基板,其结构自上而下依次为无氧铜层、纳米金属层、高导热氮化硅陶瓷基板。本发明通过真空磁控溅射金属化技术,实现了高导热氮化硅陶瓷基板与无氧铜的室温键合,降低了高温引起的应力问题,能够有效提高功率器件的可靠性及使用寿命。
-
公开(公告)号:CN111015006A
公开(公告)日:2020-04-17
申请号:CN201911290287.5
申请日:2019-12-16
Applicant: 哈尔滨工业大学(威海)
IPC: B23K31/12 , B23K26/70 , B23K26/348
Abstract: 本发明提出一种基于光谱信息的激光电弧复合焊接质量在线监测方法,包括采集光信号使用光谱仪分析并使用计算机接收光谱信息;筛选若干特征元素,找出其对应的谱线强度,进行主成分分析;计算主成分的均值及协方差矩阵;计算T2统计量;将T2值画在控制图上确定控制限;通过判断控制图中各点是否超出控制限确定是否存在焊接缺陷;选择不存在焊接缺陷的焊缝对应的协方差矩阵来监控其他焊接过程,进行其他焊接过程时,采集光信号使用光谱仪分析并使用计算机接收光谱信息;找出选定元素对应的谱线强度,进行主成分分析;计算T2值并确定控制限;通过判断控制图中各点是否超出控制限确定是否存在焊接缺陷。上述方法可有效的检测焊接过程中的缺陷。
-
公开(公告)号:CN107363433B
公开(公告)日:2019-09-17
申请号:CN201710819990.5
申请日:2017-09-13
Applicant: 哈尔滨工业大学(威海)
IPC: B23K35/32 , B23K35/368 , B23K35/04
Abstract: 本发明提供了一种用于钛及钛合金焊接的药芯焊丝,由外皮及内部活性药芯组成。所述外皮为钛含量质量百分比不低于98%,氢含量质量百分比不超过0.015%的钛带,内部活性药芯由金属粉、Si粉、B粉以及活性剂组成,各组成成分的质量百分比:Ti为16%~34%;B为2%~6%;Co为0.2%~0.4%;Mn为0.8%~1%;Si为0.10%~0.25%;Ni为1%~3%;Cu为1%~3%;氯化物为1%~5%;氟铝酸盐为12%~16%;MgF2为5%~15%;SrF2为20%~60%。其中氯化物、氟铝酸盐、MgF2和SrF2为药芯中的活性剂成分。焊接深宽比大,熔敷效率高,且使焊接工艺流程简化,适用于钛及钛合金的焊接。
-
公开(公告)号:CN107363432B
公开(公告)日:2019-07-23
申请号:CN201710767258.8
申请日:2017-08-31
Applicant: 哈尔滨工业大学(威海)
Abstract: 一种用于连接镍基高温合金的复合钎料及钎焊方法,此方法可解决现有的接头界面处由于钎料中降熔元素向母材中扩散所形成的脆性化合物较多,接头塑性较差,无法完全满足航空航天对高性能要求的问题,本发明的复合钎料由主要元素Ni、Cr,并添加Si、B降熔元素及石墨烯增强相通过超声搅拌方法制成;将复合钎料置于待连接面之间,放入真空加热炉中加热保温,最后冷却至室温完成钎焊。本发明操作简单,石墨烯的加入阻碍了钎料中Si、B等降熔元素在母材与钎缝连接界面处的富集,抑制了钎料与母材的过度反应,连接界面处析出的脆性化合物数量明显减少,扩散区的晶粒尺寸趋于均匀,大大提高了接头性能。
-
公开(公告)号:CN106007773B
公开(公告)日:2019-06-07
申请号:CN201610347362.7
申请日:2016-05-24
Applicant: 哈尔滨工业大学(威海)
IPC: C04B37/02
Abstract: 本发明公开了一种多孔氮化硅陶瓷与TiAl基合金的真空钎焊方法,步骤一、将质量分数为1.5~3wt.%的纳米氮化硅颗粒、质量分数为2~4wt.%的Ti粉与AgCu粉末进行机械球磨4~6h,提到复合钎料;步骤二、将球磨后的复合钎料与预处理后的TiAl基合金和多孔氮化硅母材进行装配,保持钎料粉厚度在50~200μm之间;步骤三、将装配好的钎焊接头放入真空炉中,在真空环境下加热至840℃~900℃,保温5min~30min,即实现多孔陶瓷与合金基体之间高强度的有效连接,本发明技术方案能够有效解决多孔陶瓷与TiAl基合金的连接问题,获得力学性能优良的钎焊接头。
-
公开(公告)号:CN109822197A
公开(公告)日:2019-05-31
申请号:CN201910120844.2
申请日:2019-02-18
Applicant: 哈尔滨工业大学(威海) , 中国原子能科学研究院
Abstract: 本发明公开了一种全自动燃料棒装焊装置及方法,全自动燃料棒装焊装置,包括机架,机架上设置有芯块定位系统、智能装配装置、旋转焊台、氩弧焊自动焊接装置、物料治具、控制器;芯块定位系统、智能装配装置、旋转焊台、氩弧焊自动焊接装置、物料治具均与控制器相连接,控制器设置于机架下端的机箱中;全自动燃料棒装焊装置的使用方法通过多个步骤完成燃料棒的全自动装配及焊接任务。本发明用于燃料棒的生产制造过程,能够完成燃料棒的全自动装配及焊接任务,解决人工操作效率低、废品率高、操作困难、劳动强度大、人身健康受到威胁等问题,具有装焊效率高、精度高、智能化程度高、焊接质量好等优点。
-
公开(公告)号:CN109175742A
公开(公告)日:2019-01-11
申请号:CN201811083012.X
申请日:2018-09-17
Applicant: 哈尔滨工业大学(威海)
IPC: B23K28/02
CPC classification number: B23K28/02
Abstract: 本发明涉及一种模拟深水环境下超声波辅助湿法焊接实验装置及其使用方法,解决了现有技术现有焊缝气孔较多,焊接缺陷多、焊缝不美观,且焊缝金属的力学性能差的技术问题。本发明提供一种模拟超声波辅助湿法焊接实验装置,其包括压力舱、供气系统、电源系统,压力舱壁上分别贯穿设有第一进气管、第二进气管和泄压阀;压力舱内固定连接设有固定支架和行走机构,行走机构表面上设置有水箱,行走机构的运动方向与焊枪的所在轴向垂直;压力舱内还设有下端均置于水箱内的超声装置和焊接装置,超声装置包括上下固定连接的超声换能器和超声变幅杆,超声换能器输出的超声波为纵波,超声变幅杆的振动方向为轴向振动。本发明广泛应用于水下焊接技术领域。
-
公开(公告)号:CN109014575A
公开(公告)日:2018-12-18
申请号:CN201811000369.7
申请日:2018-08-30
Applicant: 哈尔滨工业大学(威海)
CPC classification number: B23K26/21 , B23K26/211 , B23K26/70 , B23K26/702
Abstract: 本发明公开了一种窄间隙双热丝激光焊接装置、方法及应用,窄间隙双热丝激光焊接装置包括发射激光束的激光束发射装置,激光束的两侧分别设置有填充焊丝,填充焊丝加热后进行激光焊接。本发明所述的窄间隙双热丝激光焊接装置或方法通过引入双热丝使其具有更强的焊缝填充能力,避免了激光与电弧之间复杂的作用关系,避免焊接飞溅等的产生。此外,热丝可以使得激光功率得到一定程度的降低,使得焊接热输入维持在较低的水平,进而避免了大的焊接热影响区及焊接变形的产生。另外在焊接方法中,将部分激光束作用于侧壁,有利于避免侧壁未熔合等缺陷,同时以热导焊的形式形成焊接熔池,避免了焊接小孔的产生,焊接过程稳定。
-
-
-
-
-
-
-
-
-