-
公开(公告)号:CN111753377B
公开(公告)日:2022-09-30
申请号:CN202010640152.3
申请日:2020-07-06
Applicant: 吉林大学
IPC: G06F30/15 , G06F30/20 , G06Q10/04 , G06F119/14
Abstract: 本发明公开了一种基于道路信息的纯电动汽车能耗最优路径规划方法,采集道路信息与车辆历史数据;建立车辆半物理半经验能耗计算模型:将车辆能耗分为克服行驶阻力能耗、传动系统损失能耗和辅助系统能耗三部分并分别建模,建立车辆半物理半经验能耗计算模型,然后结合道路信息、高程信息与环境信息对能耗计算模型中的可变参数进行估计;基于马尔科夫法对道路参考节点间的车速v进行预测:对不同类型道路设置参考节点,分别在道路加速、减速段应用马尔科夫链进行工况预测;结合能耗成本边代价,通过A*搜索算法建立最优能耗路径规划模型。本发明利用丰富的交通信息建立准确的能耗预测与路径规划模型,进而提供准确的预测能耗与能耗最优路径。
-
公开(公告)号:CN111152780B
公开(公告)日:2021-06-25
申请号:CN202010017847.6
申请日:2020-01-08
Applicant: 吉林大学
IPC: B60W20/15 , B60W40/105 , B60W50/00
Abstract: 本发明公开了一种基于“信息层‑物质层‑能量层”框架的车辆全局能量管理方法,包括三个主要层面:信息层、物质层、能量层、以及两个交接层:信息层‑物质层之间的交接层、物质层‑能量层之间的交接层、最后是涉及实车应用的应用层。信息层完成车速、滑移率、道路坡度等工况信息的获取,信息层‑物质层之间的交接层完成SOC可行域的离散,物质层中基于“动/势能‑车载能量守恒”框架确定各触发条件对应的工作模式,物质层‑能量层之间的交接层完成燃油矩阵的确定,能量层中基于全局寻域算法完成SOC最优轨迹域的输出,并在应用层中形成用于实车实时应用的map图。本发明所提“信息层‑物质层‑能量层”框架,能够规范化全局能量管理控制流程。
-
公开(公告)号:CN112406829A
公开(公告)日:2021-02-26
申请号:CN202011457204.X
申请日:2020-12-10
Applicant: 吉林大学
Abstract: 本发明公开了一种主动式制动踏板行程模拟器及其控制方法,旨在克服现有技术存在对液压调节单元性能要求过高,对现有部件利用不充分的问题。其包括模拟器驱动机构和模拟器执行机构两部分。模拟器驱动机构包括电机控制器、电动机、主动齿轮、带齿内循环螺母、滚珠、丝杆顶杆、推力轴承、限位开关、后盖、隔板。模拟器执行机构包括第二活塞、第二活塞弹簧、第一活塞、第一活塞弹簧、第三活塞、第三活塞弹簧、第三活塞弹簧座、模拟器缸体。模拟器缸体与隔板通过三颗隔板连接螺栓相连接,后盖与隔板通过七颗后盖连接铆钉相连接,电动机与隔板通过两颗电动机固定螺栓相连接,第三活塞套装在丝杆顶杆的滑杆部分。本发明还提供了一种控制方法。
-
公开(公告)号:CN110979342B
公开(公告)日:2021-02-05
申请号:CN201911390182.7
申请日:2019-12-30
Applicant: 吉林大学
IPC: B60W40/105 , B60W40/10 , B60W40/076 , B60W50/00
Abstract: 本发明公开一种用于车辆全局能量管理控制的工况信息获取方法,根据可预先了解信息的不确定性,从三个层次实现车速、滑移率、道路坡度信息的获取:当车辆在整个工况下的行驶车速和道路海拔可获取时,根据采集的数据获取各工况信息;当车辆在整个工况下行驶的工况信息所遵循的规律可获取时,若能用某一确切的分布函数以表述其分布规律,根据此函数获取各工况信息,反之,基于历史行驶数据构建状态转移概率矩阵,获取各工况信息;当车辆在整个工况下针对行驶的工况信息所施加的约束条件可获取时,根据所述约束条件获取其外轮廓线,基于熵最大原理获取各工况信息。能够为车辆全局能量管理提供全面、准确的工况信息,提高全局优化实车应用的可能性。
-
公开(公告)号:CN110126841B
公开(公告)日:2020-08-04
申请号:CN201910383050.5
申请日:2019-05-09
Applicant: 吉林大学
IPC: B60W50/00
Abstract: 本发明公开了一种基于道路信息和驾驶风格优化的纯电动车能耗模型预测方法,利用车载传感器、地理信息软件、电子地图以及天气预报系统获取车辆状态参数、道路信息参数、环境信息参数;根据获取的参数,对滚阻系数、空气密度和道路坡度参数进行参数估计;并通过建立基于道路信息和驾驶风格优化的工况预测模型进行工况预测,使预测工况的能耗可以准确近似实际工况的能耗。建立纯电动车能耗预测模型进行能耗预测:基于纯电动车性能试验,建立纯电动车能耗计算模型,以参数估计结果和工况预测结果作为纯电动车能耗计算模型的输入,形成纯电动车能耗预测模型,纯电动车能耗预测模型输出预测能耗,对未来路径信息的能耗进行预测。
-
公开(公告)号:CN109733248B
公开(公告)日:2020-07-24
申请号:CN201910018307.7
申请日:2019-01-09
Applicant: 吉林大学
Abstract: 本发明公开了一种基于路径信息的纯电动汽车剩余里程模型预测方法,包括以下步骤:对驾驶员历史行驶数据进行分析,提取路径信息,生成符合驾驶员行为特征的状态转移概率矩阵;基于未来路径的道路信息和相应的状态转移概率矩阵,生成预测车速;建立参数估计模型,对影响汽车能耗及剩余行驶里程的行驶参数进行估计;建立RDR计算模型以预测车辆剩余行驶里程,能耗预测模型以车速预测模型得到的预测车速和参数估计模型估算的行驶参数作为模型输入,计算出车辆能量消耗率;剩余能量预测模型用于预估车辆电池剩余能量;综合车辆能量消耗率及电池剩余能量即可预测车辆剩余行驶里程,并通过剩余行驶里程显示模型进行显示。
-
公开(公告)号:CN111422197A
公开(公告)日:2020-07-17
申请号:CN202010420366.X
申请日:2020-05-18
Applicant: 吉林大学
Abstract: 本发明涉及一种考虑智能车群流量的智能驾驶车辆主动换道系统,换道系统包括摄像头、雷达、轮速传感器、IMU组件、通信模块、GNSS模块、ECU模块、HMI模块及运动执行模块;换道综合决策方法包括:获取本车辆以及环境车辆的运动信息、道路基本信息、判断换道的运动增益、计算对应的纵向最小安全距离、判断换道行为是否对车流量造成较大影响等步骤,本发明在传统的最小安全距离模型的基础上,分别在直道和弯道等不同道路情况下,考虑道路曲率对最小安全距离模型的影响,综合考虑换道行为对目标车道车流量的影响,建立了换道系统和综合决策模型,为智能网联汽车在换道时提供切实可行的决策依据,最终得到更全面、更经济以及更高效的综合换道控制方法。
-
公开(公告)号:CN107054049B
公开(公告)日:2019-11-01
申请号:CN201611197933.X
申请日:2016-12-22
Applicant: 吉林大学
Abstract: 本发明公开了一种用于车辆的混合动力系统,旨在克服目前混合动力系统功率分流构型结构复杂、控制难度大的问题,用于车辆的混合动力系统包括第一与第二两种用于车辆的混合动力系统。第一与第二两种用于车辆的混合动力系统包括混合动力系统、发动机、第一电机与第二电机;其中混合动力系统包括行星齿轮机构与双离合变速器。发动机曲轴输出端通过连接轴与双离合变速器中的离合器主动盘固定连接;第一电机转子的输出输入端与行星齿轮机构中的行星排太阳轮同轴连接;第二电机转子的输出输入端与双离合变速器中的双离合变速器第一轴同轴连接;所述的第二种技术方案中第二电机转子的输出输入端与双离合变速器中的双离合变速器第二轴的右端同轴固定连接。
-
公开(公告)号:CN108128302B
公开(公告)日:2019-10-29
申请号:CN201711174515.3
申请日:2017-11-22
Applicant: 吉林大学
Abstract: 本发明公开了一种用于混合动力汽车全局能量管理的电池荷电状态规划方法,所述方法包括车用动力电池SOC可行域的离散方法及SOC值的规划方法,具体包括SOC可行域边界转折点对应时刻的计算、SOC可行域各时刻SOC最值的计算、SOC可行域各时刻离散点数量及离散间隔的计算、SOC可行域各时刻对应标号下SOC值的计算等部分,所述离散方法根据SOC最大离散间隔和SOC离散点数量的限制实现了电池SOC可行域内的合理离散,所述规划方法是通过对SOC值进行规划找到最优控制序列,实现能量管理控制的全局最优。本发明既保证了电池能量管理计算的精度要求,又显著降低了计算负荷和成本,具备较高的综合效能。
-
公开(公告)号:CN110135632A
公开(公告)日:2019-08-16
申请号:CN201910352493.8
申请日:2019-04-29
Applicant: 吉林大学
Abstract: 本发明公开了一种基于路径信息的PHEV自适应最优能量管理方法,通过车载导航系统规划出行驶路径,生成前方路径的预测工况;建立出行里程预测策略对每日用户出行里程进行预测;通过生成的预测数据以及初始SOC,基于SOC规划算法生成参考SOC;进行APMP优化算法:以油耗最小为全局优化目标,引入协同状态值,将全局优化问题转化为若干个带有汉密尔顿算子的瞬时优化问题;采用遗传算法优化协同状态初值;利用插值法在MAP图中求出协同状态初值,根据车载导航系统获得的工况信息及参考SOC对协同状态初值进行实时的修正;利用PMP优化算法进行动力分配,通过CAN总线传递给各执行部件控制器,完成PHEV的整车控制。
-
-
-
-
-
-
-
-
-