一种基于鲁棒优化的超精密运动台故障诊断方法

    公开(公告)号:CN119065248A

    公开(公告)日:2024-12-03

    申请号:CN202411175935.3

    申请日:2024-08-26

    Abstract: 一种基于鲁棒优化的超精密运动台故障诊断方法,涉及超精密装备制造技术领域。期望位置信号、位置干扰信号和位置故障信号输入控制系统获得位置信号、控制信号和控制对象;位置信号、控制信号和控制对象输出至故障诊断系统,其中,控制对象进行左互质因式分解获得分解矩阵M(s)和N(s),M(s)和N(s)分别与位置信号和控制信号相乘再作差获得残余误差;残余误差输入鲁棒故障诊断滤波器获得超精密运动台的故障检测信号,与设定阈值进行对比判断是否发生故障。在保证对故障信号敏感的前提下,对系统不确定性引起的误差和外部干扰具有更好的抑制效果,显著提高故障诊断的鲁棒性和准确性。

    一种宏微冗余驱动运动台协同控制系统及方法

    公开(公告)号:CN116256973B

    公开(公告)日:2023-11-14

    申请号:CN202211678533.6

    申请日:2022-12-26

    Abstract: 一种宏微冗余驱动运动台协同控制系统及方法,涉及一种控制系统及方法。轨迹生成器R生成期望运动轨迹r1(k)和r2(k),耦合系统包括耦合信号d12(s)和d21(s),协同迭代控制系统输入同步误差信号,输出迭代控制信号,微动运动台伺服误差e2(k)经过反馈控制器C2(s),再加上前馈控制器A2(s)的信号输入到微动台模型,输出实际运动轨迹y2(k),宏动运动台伺服误差e1(k)加上迭代控制信号经过反馈控制器C1(s),再加上前馈控制器A1(s)的信号输入到宏动台模型,输出实际运动轨迹y1(k)。进行多通道方法学习有效提高学习频率,扩展学习带宽,提高迭代同步精度。

    基于频率选择的精密运动平台运动轨迹规划系统及方法

    公开(公告)号:CN116909210A

    公开(公告)日:2023-10-20

    申请号:CN202310860403.2

    申请日:2023-07-13

    Abstract: 基于频率选择的精密运动平台运动轨迹规划系统及方法,属于精密运动平台技术领域。轨迹生成器输出参考S曲线;参考S曲线经柔性系统获得系统输出,柔性系统的共振频率以及系统输出的残余振荡信息共同提供给轨迹生成器以修正参考S曲线。方法如下:确定参考S曲线的阶次;设计含参S型运动轨迹并获得轨迹含参零点;确定S型运动轨迹的参数;判定参数是否合理;判定残余振荡是否满足要求,确定运动轨迹设计标准。本发明解决了传统精密运动平台运动轨迹规划参数设计仅着眼于运动轨迹的几何光顺忽略了被控对象的柔性特性的问题,且不需要添加额外的减震装置,减少了整体重量,降低了经济成本。

    精密运动平台点位运动鲁棒轨迹规划系统及其规划方法

    公开(公告)号:CN116700150A

    公开(公告)日:2023-09-05

    申请号:CN202310860402.8

    申请日:2023-07-13

    Abstract: 精密运动平台点位运动鲁棒轨迹规划系统及其规划方法,属于精密运动平台技术领域。轨迹生成器输出参考S曲线;参考S曲线经柔性系统获得系统输出,柔性系统的共振频率以及系统输出的残余振荡信息共同提供给轨迹生成器以修正参考S曲线。方法如下:设计对称S型运动轨迹,设计S型运动轨迹参数;修整轨迹增强运动轨迹对模型摄动鲁棒性;判定S型运动轨迹设计是否合理;将获得的非对称S曲线输入柔性系统,获得系统输出;按照系统需求判定残余振荡是否满足要求。本发明解决了传统精密运动平台点位运动轨迹规划方法仅关注运动轨迹的几何光顺未考虑被控对象柔性特性的问题,同时解决了传统点位运动轨迹规划方法加减速对称规划增加运动耗时的问题。

    一种宏微冗余驱动运动台协同控制系统及方法

    公开(公告)号:CN116256973A

    公开(公告)日:2023-06-13

    申请号:CN202211678533.6

    申请日:2022-12-26

    Abstract: 一种宏微冗余驱动运动台协同控制系统及方法,涉及一种控制系统及方法。轨迹生成器R生成期望运动轨迹r1(k)和r2(k),耦合系统包括耦合信号d12(s)和d21(s),协同迭代控制系统输入同步误差信号,输出迭代控制信号,微动运动台伺服误差e2(k)经过反馈控制器C2(s),再加上前馈控制器A2(s)的信号输入到微动台模型,输出实际运动轨迹y2(k),宏动运动台伺服误差e1(k)加上迭代控制信号经过反馈控制器C1(s),再加上前馈控制器A1(s)的信号输入到宏动台模型,输出实际运动轨迹y1(k)。进行多通道方法学习有效提高学习频率,扩展学习带宽,提高迭代同步精度。

    一种双运动台精密协同控制系统及方法

    公开(公告)号:CN113031439B

    公开(公告)日:2021-08-31

    申请号:CN202110225803.7

    申请日:2021-03-01

    Abstract: 一种双运动台精密协同控制系统及方法,涉及一种控制系统及方法。包括轨迹生成器Cr、运动台1的闭环系统以及运动台2的闭环系统。迭代实验次数j赋初值为1,两个运动台的前馈控制信号赋初值为0;进行第j次迭代实验,运行协同控制系统,计算协同运动误差;更新两个运动台的前馈控制信号;继续下一次迭代,直至协同运动误差满足精度要求停止迭代实验。可同时减少两个运动台各自的伺服误差和双运动台的协同运动误差,采用自适应方法设计学习系数,提高收敛速度,对外部随机扰动具有较高鲁棒性,抗扰能力较强。

    一种双运动台精密协同控制系统及方法

    公开(公告)号:CN113031439A

    公开(公告)日:2021-06-25

    申请号:CN202110225803.7

    申请日:2021-03-01

    Abstract: 一种双运动台精密协同控制系统及方法,涉及一种控制系统及方法。包括轨迹生成器Cr、运动台1的闭环系统以及运动台2的闭环系统。迭代实验次数j赋初值为1,两个运动台的前馈控制信号赋初值为0;进行第j次迭代实验,运行协同控制系统,计算协同运动误差;更新两个运动台的前馈控制信号;继续下一次迭代,直至协同运动误差满足精度要求停止迭代实验。可同时减少两个运动台各自的伺服误差和双运动台的协同运动误差,采用自适应方法设计学习系数,提高收敛速度,对外部随机扰动具有较高鲁棒性,抗扰能力较强。

    基于PWM的气浮台平动控制方法

    公开(公告)号:CN105059572B

    公开(公告)日:2017-04-26

    申请号:CN201510446251.7

    申请日:2015-07-27

    Inventor: 刘杨 宋法质 李理

    Abstract: 基于PWM的气浮台平动控制方法,属于地面全物理仿真领域,本发明为解决现有气浮台平动控制方法控制精度低、推力器开启时间长、能源消耗大的问题。本发明具体过程为:根据位置基准信号和气浮台位置信号获取位置误差信号;PID控制器根据位置误差信号输出控制电压,将控制电压的调制波输送至PWM模块;PWM模块采用等腰三角形的锯齿波作为载波,将调制波与载波调制为PWM波;当PWM波占空比为1时,位置误差信号较大,推力器打开;当PWM波占空比小于1时,位置误差信号较小,在PWM波高电平时推力器打开,低电平时推力器关闭;推力器打开时将控制电压转换为脉冲形式的离散推力,推动气浮平台平动。本发明用于卫星地面仿真。

    一种双工件台系统换台过程控制方法

    公开(公告)号:CN104965394B

    公开(公告)日:2017-03-22

    申请号:CN201510471721.5

    申请日:2015-08-04

    Inventor: 刘杨 董岳 宋法质

    Abstract: 一种双工件台系统换台过程控制方法,本发明属于半导体制造装备的技术领域。它的方法步骤为:第一工件台移动到左侧预处理工作位置处;第二工件台移动到右侧曝光工作位置处;第一X向移动平台移动到左侧换卡位置处,第二X向移动平台移动到右侧换卡位置处;公转电机带动第一工件台和第二工件台逆时针旋转180度;第二工件台移动到左侧预处理工作位置处;第一工件台移动到右侧曝光工作位置处;公转电机带动第一工件台和第二工件台顺时针旋转180度。本发明方法采用回转换台方案,与直线换台方案相比,减少了换台过程中对台体的冲击,减少了换台时间,提高了工件台定位精度,对增加光刻机产率起到了至关重要的作用。

Patent Agency Ranking