-
公开(公告)号:CN119245976A
公开(公告)日:2025-01-03
申请号:CN202411374399.X
申请日:2024-09-29
Applicant: 北京控制工程研究所
IPC: G01M5/00
Abstract: 本发明提供了一种挠性作动器刚度自主标定方法。方法包括:基于构建得到的挠性作动器运动学模型对每个挠性作动器的输出力进行调整,以使输出力呈正弦波形式;分别判断当前时刻挠性作动器的输出力是否大于预设标定阈值;若是,则基于作动器柔度标定公式对挠性作动器进行标定,得到挠性作动器的柔度标定值;若否,则将下一时刻作为当前时刻返回执行挠性作动器的输出力判定步骤;判断当前时刻的柔度标定值和上一时刻的柔度标定值的差值是否大于标定结束阈值,若是,则返回执行柔度标定值的判断步骤;若否,则基于当前时刻的柔度标定值以对挠性作动器的刚度进行标定。本方案,能够实现航天器在轨运行期间挠性作动器刚度特性参数的自主标定。
-
公开(公告)号:CN119232238A
公开(公告)日:2024-12-31
申请号:CN202411374362.7
申请日:2024-09-29
Applicant: 北京控制工程研究所
IPC: H04B7/185 , H04N23/661
Abstract: 本发明提供了一种利用线阵相机推扫成像的空间目标跟踪方法及装置。方法包括:根据卫星和空间目标在惯性系中的位置矢量和速度矢量,计算中心交汇时刻卫星指向空间目标的速度矢量和位置矢量;基于卫星指向空间目标的位置矢量,得到中心交汇时刻卫星指向空间目标的姿态角;根据卫星指向空间目标的位置矢量和相对速度矢量,得到卫星推扫的姿态角和欧拉轴;基于卫星指向空间目标的姿态角、卫星推扫的姿态角和欧拉轴,得到当前时刻下空间目标的惯性四元数和惯性角速度;根据空间目标的惯性四元数和惯性角速度,计算当前时刻卫星的姿态控制力矩,以驱动卫星对空间目标进行实时跟踪。本方案,能够实现对空间目标的高分辨率成像。
-
公开(公告)号:CN111781943B
公开(公告)日:2024-04-12
申请号:CN202010699423.2
申请日:2020-07-20
Applicant: 北京控制工程研究所
IPC: B64G1/24
Abstract: 本发明一种航天器分布式载荷位姿三超控制方法,适用于对两个载荷间相对姿态具有超高精度、超高稳定度和超高敏捷度的大型卫星平台。与传统的PID控制算法不同,本发明结合滑模控制在滑模面上的鲁棒性特点和自适应控制能够在线估计参数的特点,提出了一种星体姿态‑载荷相对姿态两级复合控制方法,其中载荷相对姿态控制器用于对载荷相对姿态的精细控制,本体姿态控制器用于实现姿态快速机动和抑制低频振动,实现对载荷相对姿态的超精超稳超敏捷(三超)控制。多级协同控制思路为:1)采用前馈+反馈控制器实现载荷相对姿态的高精度指向控制,并通过载荷惯量给出控制器参数设计方法;2)针对航天器本体设计考虑带宽约束的鲁棒自适应控制器,通过参数设计方法保证航天器本体控制器能有效与载荷控制器相匹配,实现两级复合控制。
-
公开(公告)号:CN111638721B
公开(公告)日:2023-08-11
申请号:CN202010351875.1
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种航天器三超控制全链路扰动传递验证系统及验证方法,所设计的方法用于定量分析光学载荷“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制技术。首先设计物理试验系统,由星体(采用三轴气浮台模拟)、主动指向超静平台、重力卸载支架、景物模拟器、平行光管等部分组成;然后依据物理模型建立结构‑控制‑光学分析模型,并以此进行控制器设计;最后通过实验定量分析三超控制的全链路扰动传递特性,实现扰振对三超平台观测图像质量影响的定量分析评估。
-
公开(公告)号:CN111625010B
公开(公告)日:2023-04-14
申请号:CN202010350592.5
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种基于组合滤波的航天器三超近零误差跟踪控制方法,适用于目标跟踪且具有载荷超高精度确定需求的领域。与传统的航天器星体平台单级姿态控制不同,本发明针对具有“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等“三超”控制性能的航天器平台提出了基于组合滤波的星体‑载荷‑快反镜三级姿态协同控制方法,利用深度学习提高对目标的位姿解算,并从星体、载荷、快反镜三级系统逐级提高姿态控制精度,为光学载荷快速跟踪和高质量成像提供高精度姿态控制。本发明方法主要思路为:建立三级协同控制系统动力学模型;基于深度学习的目标航天器特征部位位姿解算;设计多级系统融合滤波器;设计三级协同控制系统控制器,包括带宽设计。
-
公开(公告)号:CN111580532B
公开(公告)日:2023-04-14
申请号:CN202010351845.0
申请日:2020-04-28
Applicant: 北京控制工程研究所
IPC: G05D1/08
Abstract: 一种航天器多级系统的聚合分离三超控制方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度确定需求的领域。针对具有“超高精度指向”、“超高稳定度控制”、“超敏捷控制”等三超控制性能的航天器平台进行星体‑载荷‑快反镜三级姿态复合控制,从星体、载荷、快反镜三级系统逐级提高姿态控制精度,为光学载荷高质量成像提供高精度姿态控制。主要思路为:当航天器作快速机动任务时,载荷不进行姿态控制,通过对超静平台作动器设置较大控制参数实现聚合控制;当航天器做被动推扫观测任务时,对载荷进行姿态控制,通过对载荷控制器设置较小控制参数实现分离控制;当航天器做主动推扫观测任务时,通过对载荷控制器设置适中控制参数实现协调控制。
-
公开(公告)号:CN112257906B
公开(公告)日:2022-08-12
申请号:CN202011061688.6
申请日:2020-09-30
Applicant: 北京控制工程研究所
Abstract: 本发明一种基于状态管理的成像卫星自主任务规划驱动方法,具体步骤如下:(1)任务状态信息提取;(2)任务状态信息融合并对融合后的状态信息进行优化,建立任务状态量并改进状态量的设计;(3)对任务状态的迁移进行优化,建立有限状态机,以此驱动自主任务规划流程。本发明基于状态管理,并对任务状态量的设计进行改进,对任务状态的迁移进行优化,保证自主任务规划流程正确驱动的同时使得成像卫星自主任务规划更加灵活智能。
-
公开(公告)号:CN111536983B
公开(公告)日:2022-06-03
申请号:CN202010393984.X
申请日:2020-05-11
Applicant: 北京控制工程研究所
Abstract: 本发明涉及一种航天器三超控制宽频多源多级的协同定姿方法及系统,解决航天器指向控制过程中测量敏感器难以给出大范围机动情况下的相对姿态测量问题,适用于空间视线指向控制领域。在相对轨道运动方程基础上,利用滤波估计获得追踪航天器和目标航天器的相对位置矢量、速度矢量。采用双矢量定姿方法建立目标指向姿态,并进一步通过滤波估计获得追踪航天器指向目标航天器的视线角速度信息,为航天器姿态指向控制系统提供准确的相对姿态和视线角速度信息。
-
公开(公告)号:CN112027113B
公开(公告)日:2022-03-04
申请号:CN202010718079.7
申请日:2020-07-23
Applicant: 北京控制工程研究所
Abstract: 本发明一种主动指向超静平台高带宽低噪声驱动控制方法,建立载荷控制的频域模型;载荷控制的频域模型中包含驱动电路的理论模型和驱动电路时间常数;通过对驱动电路进行扫频测试,获得驱动电路的实测频率特性曲线;根据载荷控制的频域模型中的驱动电路的理论模型,绘制理论模型的频率特性曲线,通过不断调整驱动电路时间常数,使得理论模型的频率特性曲线与驱动电路的实测频率特性曲线一致,得到此时对应的驱动电路时间常数,在作动器的音圈电机的控制器中设计超前校正函数G2,对驱动电路时延特性进行补偿,实现对音圈电机的高带宽低噪声控制,从而实现对主动指向超静平台高带宽低噪声控制,为航天器载荷的高精度控制提供保障。
-
公开(公告)号:CN112100733A
公开(公告)日:2020-12-18
申请号:CN202010718004.9
申请日:2020-07-23
Applicant: 北京控制工程研究所
IPC: G06F30/15 , G06F30/23 , G06F119/14
Abstract: 本发明一种基于三超控制的主被一体挠性作动器挠性环节与作动单元一体化应力均衡方法,适用于天文观测、高分辨率对地观测等具有载荷超高精度、超高稳定度、超敏捷控制需求的领域。本发明针对具有多级协同控制的航天器,提出了一种膜簧、柔性铰与作动单元并联一体控制结构设计方法,具有振动隔离、扰振抑制和精确指向调节的功能,实现主被一体挠性作动器过发射主动段抗力学环境的分析与应力优化设计,提升作动器过发射主动段的可靠性,可应用于主动指向超静平台设计,用于实现载荷超高精度、超高稳定度、超敏捷“三超”控制性能。
-
-
-
-
-
-
-
-
-