-
公开(公告)号:CN106024760B
公开(公告)日:2018-06-29
申请号:CN201610389241.9
申请日:2016-06-02
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L23/552 , H01L21/768
Abstract: 本发明提供一种用于磁场屏蔽的半导体器件及其制作方法,包括:衬底;位于衬底上表面的第一超导层;位于第一超导层表面的第一介电层;位于第一介电层表面、由二维半导体薄膜层形成的霍尔结构;位于霍尔结构表面的第二介电层;位于第二介电层表面的第二超导层;位于衬底上表面,并与霍尔结构连接的金属接触电极;第一、第二超导层的长宽小于第一、第二介电层的长宽,第一、第二介电层的长宽均小于等于霍尔结构的长宽,且霍尔结构的长宽小于衬底的长宽。通过本发明提供的一种用于磁场屏蔽的半导体器件及其制作方法,解决了利用现有技术中当二维半导体薄膜应用在新型微纳电子器件中时易受环境中电磁场的干扰,进而影响器件工作的问题。
-
公开(公告)号:CN103151245B
公开(公告)日:2016-02-17
申请号:CN201310103325.8
申请日:2013-03-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明提供一种薄膜图形化方法,该方法至少包括以下步骤:提供一非金属衬底,并在该非金属衬底上形成光刻胶;进行光学曝光,将预设图形转移至该光刻胶上;在步骤2)之后获得的结构上沉积金属层;然后去除光刻胶并剥离,获得所需金属图形结构;在上述金属图形结构表面沉积薄膜材料,形成薄膜;最后去除剩余金属层得到图形化薄膜。本发明利用通常的图形化技术,实现金属的图形化,再以金属为掩膜板,在衬底上直接沉积高温生长的薄膜材料,该发明即沿用了传统的图形化技术,又克服了光刻胶在高温下无法做掩膜板使用的弊端;与离子束刻蚀方法相比,本发明工艺简单,易于操作,且花费较低。
-
公开(公告)号:CN104992905A
公开(公告)日:2015-10-21
申请号:CN201510307155.4
申请日:2015-06-05
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/306
CPC classification number: H01L21/30612
Abstract: 本发明提供一种氮化硼衬底表面台阶刻蚀方法,包括如下步骤:S1:提供一六角氮化硼衬底;S2:在所述六角氮化硼衬底表面形成掩膜层,并在所述掩膜层中形成暴露出所述六角氮化硼衬底表面的预设刻蚀图形;S3:在所述掩膜层表面及所述预设刻蚀图形内沉积金属层;S4:剥离所述掩膜层及其表面的金属层;S5:对所述六角氮化硼衬底进行退火,然后去除所述预设刻蚀图形内的金属层,在所述六角氮化硼衬底表面得到单层氮化硼原子厚度的台阶。本发明不仅可以控制六角氮化硼图形化的形状,大小,还可以选择刻蚀区域,同时可以通过反复刻蚀,控制刻蚀台阶的高度,解决了基于六角氮化硼薄膜器件的图形化加工难题。
-
公开(公告)号:CN102931057B
公开(公告)日:2015-03-25
申请号:CN201210461745.9
申请日:2012-11-16
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种基于栅介质结构的石墨烯场效应器件及其制备方法,该石墨烯场效应器件包括:具有栅电极沟槽的衬底;形成于所述栅电极沟槽中的栅电极;Al2O3介电薄膜层,位于所述栅电极沟槽中的栅电极表面,且Al2O3介电薄膜层表面与衬底表面齐平;覆盖于所述Al2O3介电薄膜层和衬底表面的BN薄膜层;形成于所述BN薄膜层上方的石墨烯;设置在所述石墨烯上方的源电极和漏电极,所述源电极和漏电极分别与石墨烯电性连接。本发明制备的BN薄膜层与Al2O3介电薄膜层共同构成新型的栅介质结构,有效保持了石墨烯中固有载流子的高迁移率,增强栅极的场效应作用,适用于石墨烯基高射频器件及碳基大规模集成电路制造领域。
-
公开(公告)号:CN103839835A
公开(公告)日:2014-06-04
申请号:CN201410114348.3
申请日:2014-03-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/336 , B82Y40/00
CPC classification number: H01L29/66045
Abstract: 本发明提供一种基于石墨烯场效应管的微区加方法及结构,所述微区加热结构包括以下步骤:首先,制备基于石墨烯的场效应管,所述石墨烯具有窄边微区结构,所述场效应管的背面设置有背栅;然后,在所述石墨烯两端的电极之间加电压源或电流源,通过调节背栅电压,调制窄边微区结构的电阻,从而实现窄边微区结构的加热,所述加热的温度范围为100~1200℃。本发明的基于石墨烯场效应管的微区加热方法,操作简单,可以实现不同尺寸的微区加热,并且加热区域可控。另外,微区加热结构的制备方法简单,与现有的MOS工艺兼容,制备的微区加热结构产量高、均匀性好。
-
-
-
-