-
公开(公告)号:CN111879400A
公开(公告)日:2020-11-03
申请号:CN202010628832.3
申请日:2020-07-01
Applicant: 北京控制工程研究所
IPC: G01H17/00
Abstract: 本发明涉及一种航天器机电产品的组件模态参数测量系统及方法,组件为陀螺的高速转子、控制力矩陀螺的高速转子或飞轮的转子,模态参数包括频率、振型和阻尼,属于小质量机械零组件模态测量技术领域。采用MEMS加速度计进行小质量组件如陀螺高速转子的模态测量,降低传感器重量对被测转子质量分布的影响,提高转子模态测量精度。使用示波器代替传统加速度计的前置器和分析软件,利用简单运算实现获得模态频率、模态振型和模态阻尼,大大降低了模态测量成本。可应用于控制力矩陀螺、飞轮、二浮陀螺、三浮陀螺等产品的转子等组件模态参数的精确测量。本发明亦可应用于高速电机转子的模态测量,市场前景广阔。
-
公开(公告)号:CN108471266B
公开(公告)日:2019-12-20
申请号:CN201810238174.X
申请日:2018-03-22
Applicant: 北京控制工程研究所
IPC: H02P21/18
Abstract: 本发明涉及一种伺服电机的角速度指令及旋转角位置预处理系统,预处理系统设置跟踪微分滤波单元、整零分离指令转化单元和传送速率控制单元。本发明将对角速度进行积分得角位置,并对整数角位置和小数角位置分开计算。针对只提供指令角速度的伺服系统,相对传统角位置增量转换方法,可消除大角度角位置下,由于单精度运算造成的指令转换误差。提高了伺服系统控制稳定度。限制了旋转角位置检测周期T1为框架伺服闭环控制周期T2的整度倍;角速度遥测周期T3为角位置检测周期T1的整度倍,相对传统无约束方法,有效避免了遥测周期内角位置更新次数变化导致的遥测角速度波动,提高了遥测角度的稳定度。
-
公开(公告)号:CN107707172B
公开(公告)日:2019-08-09
申请号:CN201710828689.0
申请日:2017-09-14
Applicant: 北京控制工程研究所
Abstract: 一种CMG低速框架快速宽转矩范围、高精度驱动控制系统,采用双绕组电机形式,一个可提供大力矩,一个可提供高精度力矩,两电机可根据工况自由切换,具有宽转矩范围、高精度力矩输出能力,能够满足面向未来多任务实现的机动灵活性需求,以及超敏捷、动中成像的高性能卫星平台的需求。
-
公开(公告)号:CN106644535B
公开(公告)日:2019-05-24
申请号:CN201610822351.X
申请日:2016-09-13
Applicant: 北京控制工程研究所
IPC: G01M99/00
Abstract: 一种姿控系统全物理仿真用三自由度磁浮台,包括负载平台、磁轴承组、支承基座三个模块。负载平台上放置姿控系统的各种单机。磁轴承组给负载平台提供三个自由度的可控磁力,悬浮负载平台,使其在三个转动方向上自由运动。支承基座模块使给非悬浮状态下的负载平台提供支承和保护作用。本发明使用磁轴承悬浮负载平台,可以在真空、高低温环境下进行姿控系统全物理仿真,使姿控系统全物理仿真更接近太空环境。本发明设计了一种三自由度全解耦磁悬浮轴承分布结构,实现对负载平面三自由度平动控制力的同时,不产生转动力矩,同时消除了气浮台的气流扰动,并且可以主动隔离振动,提高了全物理仿真的精度。本发明适用于对小卫星进行三自由度全物理仿真。
-
公开(公告)号:CN105974790B
公开(公告)日:2018-12-21
申请号:CN201610364302.6
申请日:2016-05-26
Applicant: 北京控制工程研究所
Abstract: 本发明一种基于磁密反馈的磁悬浮微振动控制系统,包括检测模块、处理器模块和线性功放模块;所述的检测模块包括磁密检测单元、电流检测单元和转子位置解算单元;所述的处理器模块完成悬浮和自适应主动振动控制运算;所述的线性功放模块选用线性集成功放芯片,驱动磁轴承绕组,实现转子微振动悬浮控制。本发明系统不仅可以悬浮控制磁悬浮转子,实现传统控制系统的所有功能,而且具有转子轴向尺寸小、检测/控制同位、具备振动检测功能、微振动控制精度高的特点,非常适合超静磁悬浮飞轮微振动控制的应用。
-
公开(公告)号:CN106093456A
公开(公告)日:2016-11-09
申请号:CN201610402603.3
申请日:2016-06-08
Applicant: 北京控制工程研究所
IPC: G01P3/48
CPC classification number: G01P3/48
Abstract: 本发明一种高速电机的高精度高鲁棒转速检测系统,包括硬预处理模块、软预处理模块和测速模块;硬预处理模块对霍尔信号在传输途径中产生的霍尔高频噪声进行去除,并对去噪后的霍尔信号进行边沿陡化后送至软预处理模块;软预处理模块消除输入进来的霍尔信号的高频大功率野值,得到处理后的霍尔信号;测速模块根据处理后的霍尔信号进行测速运算,得到转子转速。本发明实现了高速电机快速、高精度、高可靠的速度检测,非常适合应用于航天用高速电机的速度检测。
-
公开(公告)号:CN106015454A
公开(公告)日:2016-10-12
申请号:CN201610499864.1
申请日:2016-06-29
Applicant: 北京控制工程研究所
IPC: F16F15/20 , F16F15/127 , F16F15/08
CPC classification number: F16F15/20 , F16F15/085 , F16F15/127
Abstract: 一种控制力矩陀螺复合减振装置,包括动力吸振器、金属橡胶隔振器,动力吸振器包括固紧配重块(1)、第一金属橡胶单元(3)、壳体(4)、壳体固紧螺钉(5),金属橡胶隔振器包括套筒(10)、第二金属橡胶单元(11)、第三金属橡胶单元(11)、第四金属橡胶单元(12)。本发明复合减振装置通过在框架转子系统的减重槽上安装动力吸振器、在控制力矩陀螺机座的安装耳上安装金属橡胶隔振器,克服了整机隔振平台无法针对框架转子系统减振的缺陷、整机隔振平台将控制力矩陀螺安装在平台上导致整机重心升高的缺点,具有重量轻、体积小和结构简单的优点。
-
公开(公告)号:CN119294068A
公开(公告)日:2025-01-10
申请号:CN202411334097.X
申请日:2024-09-24
Applicant: 北京控制工程研究所
Inventor: 罗睿智 , 张激扬 , 樊亚洪 , 王英广 , 赵同爽 , 张国琪 , 陈志华 , 张鹏波 , 刘西全 , 周刚 , 杨磊 , 田兴 , 徐勤超 , 姚锐 , 李贵明 , 赵江涛 , 王晗 , 吴金涛 , 展毅 , 王朋彦 , 张子玉 , 董晨阳 , 张清涛 , 张春艳 , 杜金龙 , 白晓波 , 许庚晨 , 马金芝 , 李雪峰 , 丁志南 , 郑向琳
IPC: G06F30/20 , G06F30/15 , G06F119/14
Abstract: 本发明涉及航空航天技术领域,特别涉及一种基于分布式磁悬浮飞轮轴向动量交换的定点吸振方法。其中,该方法包括:包括:建立包括转子沿轴向平动和绕轴向转动的磁悬浮转子动力学模型;根据磁悬浮转子动力学模型,确定磁悬浮飞轮群控制量模型;根据磁悬浮飞轮群控制量模型和星体动力学模型确定星体主动控制力和星体主动控制力矩;在星体主动控制力和星体主动控制力矩的约束下,确定磁悬浮飞轮群的力/力矩分配阵;根据磁悬浮飞轮群的力/力矩分配阵,确定各个飞轮的轴向振动力和力矩作用量;在磁悬浮转子动力学模型的基础上,根据各个飞轮的轴向振动力和力矩作用量,确定驱动电流以抑制振动。本发明的方案能够实现载荷精稳与超静性能。
-
公开(公告)号:CN114740757B
公开(公告)日:2024-12-24
申请号:CN202210345667.X
申请日:2022-03-31
Applicant: 北京控制工程研究所
Inventor: 罗睿智 , 张激扬 , 樊亚洪 , 武登云 , 张磊 , 陈志华 , 苏晏 , 李贵明 , 赵同爽 , 刘西全 , 王晗 , 于国庆 , 张鹏波 , 王英广 , 王舒雁 , 齐明 , 姚锐 , 顾正成 , 肖晓 , 杜金龙 , 高岩 , 张春艳 , 刘建 , 郭腾飞 , 冯洪伟 , 常江娟 , 郑翔 , 杨磊
IPC: G05B17/02
Abstract: 一种磁悬浮非对称旋转扫描卫星的两体姿态仿真方法,属于航天技术领域。针对非理想旋转扫描转子(载荷舱)和卫星平台舱,本发明进行了两舱系统的姿态动力学建模,为了通过磁悬浮旋转关节向平台舱借力实现载荷舱高精度姿态控制,为磁悬浮旋转关节和平台舱分别设计了姿态控制律,通过动力学系统和姿态控制系统的联合仿真,验证了模型等的有效性,为后续卫星的高精度姿态控制的控制律设计和地面仿真验证提供了模型依据。
-
公开(公告)号:CN118836805A
公开(公告)日:2024-10-25
申请号:CN202410976079.5
申请日:2024-07-19
Applicant: 北京控制工程研究所
Abstract: 本发明提供了一种磁悬浮旋转机构的位移测量装置及方法,该装置包括:传感器组件,所述传感器组件包括两个零位传感器通道,所述零位传感器通道用于进行Y轴和Z轴的零位检测;每个所述零位传感器通道均包括同轴反向放置的两个零位传感器,所述零位传感器用于进行安装轴垂直方向上的零位检测。本方案中,各传感器可独立进行输出信号调试,无相互干扰;通过标定后可消除传感器安装误差对零位传感器通道、组件测量误差的影响;通过边沿检测得到过零时间,提高了零位测量精度;将位移测量转化为时间测量,可提供高精度的零位姿态测量。
-
-
-
-
-
-
-
-
-