-
公开(公告)号:CN101719498B
公开(公告)日:2011-09-07
申请号:CN200910199720.4
申请日:2009-12-01
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L27/092 , H01L29/16 , H01L29/06 , H01L29/10 , H01L29/423
CPC classification number: H01L27/1211 , H01L21/823807 , H01L21/823821 , H01L21/845 , H01L29/42392
Abstract: 本发明公开了一种混合材料反型模式圆柱体全包围栅CMOS场效应晶体管,其包括:具有第一沟道的PMOS区域、具有第二沟道的NMOS区域及栅区,其特征在于:所述的第一沟道及第二沟道均为圆柱体,且具有不同的半导体材料,所述的第一沟道为n型的Ge材料,所述的第二沟道为p型的Si材料;栅区域将所述第一沟道及第二沟道的表面完全包围;在PMOS与NMOS区域之间、PMOS区域或NMOS区域与Si衬底之间均有埋层氧化层将它们隔离。本器件结构简单、紧凑,集成度高,在反型工作模式下,采用圆柱体全包围栅结构,高介电常数栅介质和金属栅,可避免多晶硅栅耗尽及短沟道效应等。
-
公开(公告)号:CN101771052B
公开(公告)日:2011-08-03
申请号:CN200910200965.4
申请日:2009-12-25
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L27/108 , H01L21/8242
CPC classification number: H01L29/7841 , G11C11/404 , G11C2211/4016 , H01L27/10802
Abstract: 本发明公开了一种浮体动态随机存储器的单元结构及其制作工艺。其结构包括位于埋层氧化层上的P型半导体区、位于P型半导体区上的N型半导体区以及位于N型半导体区上的栅极区,N型半导体区、P型半导体区四周设有电隔离区。利用隔离的浮体栅二极管作存储节点,通过带与带间的隧道穿透,电子在浮体积聚定义为第一种存储状态;通过PN结正向偏置,电子从浮体发射出去或者空穴注入到浮体,定义为第二种存储状态;这两种状态造成浮体栅二极管(N+/P+)正向开启电压的差异,通过电流的大小可以感知。本发明是一种高效低功耗高密度栅二极管(N+/P+)浮体存储器单元,具备制作工艺简单、集成密度高、成本低廉及可靠性高等优点。
-
公开(公告)号:CN102104048A
公开(公告)日:2011-06-22
申请号:CN200910201331.0
申请日:2009-12-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L27/12 , H01L29/78 , H01L23/60 , H01L21/84 , H01L21/336
CPC classification number: H01L27/0266
Abstract: 本发明公开了一种用于绝缘体上硅技术的MOS型ESD保护结构及其制作方法。所述ESD保护结构包括直接连接SOI衬底体区的外延硅层;外延硅层的两侧为侧氧隔离墙,所述侧氧隔离墙用以划分ESD保护结构与本征有源结构;外延硅层的顶部左右两端分别为ESD保护结构的源漏区;外延硅层的顶部中心位置处向上生长有ESD保护结构的多晶硅栅;ESD保护结构的多晶硅栅与外延硅层之间夹有ESD保护结构的二氧化硅栅介质;ESD保护结构的多晶硅栅与ESD保护结构的二氧化硅栅介质的两侧设有侧氧隔离墙。本发明使泄露电流能够下沉至SOI衬底,且通过外延工艺使得ESD保护结构与有源区本征MOS管处于同一平面,这样便于后续工艺的处理。
-
公开(公告)号:CN102098028A
公开(公告)日:2011-06-15
申请号:CN201010507239.X
申请日:2010-10-14
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
Abstract: 本发明公开了一种基于混合晶向SOI工艺的CMOS环形振荡器及制备方法,该振荡器包括:SOI衬底以及制作在SOI衬底上的CMOS器件;所述CMOS器件包括:NMOS器件和PMOS器件;所述NMOS器件的沟道采用(100)晶面硅材料,所述PMOS器件的沟道采用(110)晶面硅材料。该器件可以通过在混合晶向的SOI衬底上开设窗口外延底层硅,从而在(100)晶面的顶层硅和(110)外延硅层上分别制作NMOS器件和PMOS器件。本发明可以减少CMOS环形振荡器中CMOS晶体管宽度,增大集成密度,降低非门传输延迟时间,增大振荡频率。
-
公开(公告)号:CN102082144A
公开(公告)日:2011-06-01
申请号:CN201010532715.3
申请日:2010-11-04
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L27/02 , H01L27/12 , H01L29/739 , H01L29/06 , H01L21/84
CPC classification number: H01L27/1203 , H01L21/84 , H01L27/0255
Abstract: 本发明公开了一种SOI电路中的ESD保护结构及其制作方法,该结构包括SOI衬底以及位于SOI衬底上的栅控二极管ESD保护器件,其中,所述栅控二极管ESD保护器件包括:正极、负极、沟道、栅介质层和栅极;所述正极和负极分别位于沟道两端,所述栅介质层和栅极依次位于沟道之上;所述沟道由N型区和P型区组成,且所述N型区与P型区形成纵向的PN结结构。本发明通过离子注入形成纵向大面积PN结进行ESD设计,大大增加了PN结面积,提高了大电流释放能力,实现了与体硅ESD电路相媲美的集成度,改善了SOI电路中ESD的鲁棒性。其制造工艺成本低,与传统SOI电路完全兼容。
-
公开(公告)号:CN102064097A
公开(公告)日:2011-05-18
申请号:CN200910198914.2
申请日:2009-11-17
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
IPC: H01L21/20 , H01L27/092 , H01L29/04
Abstract: 本发明涉及一种混晶材料的制备方法及用该材料制备的半导体器件。首先在绝缘体上硅(SOI,Silicon On Insulator)材料的顶层硅上进行第一次图形化刻蚀,将窗口区向下刻蚀到露出支撑衬底硅层;再对埋氧层进行选择性刻蚀,在顶层硅和支撑衬底硅层之间形成腔体,使得埋氧层形成柱状结构;通过化学气相沉积在材料表面依次沉积SiGe合金层和间隔层;进行第二次图形化刻蚀,将第一次图形化刻蚀形成的窗口区由外延形成的TEOS、间隔层和SiGe合金层刻蚀掉,露出支撑硅衬底层;从露出的支撑硅衬底的上表面开始外延Si、Ge或者SiGe合金层;然后对整个材料的上表面进行刻蚀或者化学机械抛光,去除上表面由于外延形成的间隔层,最终在材料的上表面形成混合晶体(或混合晶向)材料。
-
公开(公告)号:CN101655576B
公开(公告)日:2011-04-20
申请号:CN200910054731.3
申请日:2009-07-14
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
Abstract: 本发明提供制备SOI基三维楔形耦合器集成衬底结构的方法,其特征在于采用硅微机械加工技术实现,所涉及的初始加工材料为SOI材料,利用硅材料不同晶面的选择性腐蚀特性,采用各向异性腐蚀、键合、光刻、干法刻蚀等微电子相关工艺得到在水平和垂直方向分别做线性变化的SOI基三维楔形耦合器集成衬底结构,且与该耦合器输出波导连接的微纳尺寸器件区域具有良好的表面质量,在有效提高通用光纤与小尺寸平面波导等光子学器件耦合效率的同时,也提供了良好的维纳尺寸光子学器件制备集成衬底结构,是制备高质量、高敏感度小尺寸光子学器件的保证,具有很强的实用性。
-
公开(公告)号:CN101997000A
公开(公告)日:2011-03-30
申请号:CN201010264004.2
申请日:2010-08-24
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L27/108 , H01L21/8242
Abstract: 本发明公开了一种具有扩展型沟槽的DRAM结构及其制作方法,该结构包括NMOS晶体管和与其源极相连的沟槽电容器,该沟槽电容器包括半导体衬底、交替排列的N型SiGe层和N型Si层、沟槽、电介质层和多晶硅层,沟槽位于交替排列的N型SiGe层和N型Si层内,深入至半导体衬底,其侧壁剖面为梳齿形,交替排列的N型SiGe层和N型Si层作为沟槽电容器的下极板,电介质层位于沟槽内壁表面,多晶硅层填充于沟槽内作为沟槽电容器的上极板;在交替排列的N型SiGe层和N型Si层之上还制备有P型Si层,所述NMOS晶体管制作于该P型Si层上。本发明方法用掺杂和外延技术交替生长N型SiGe层和N型Si层并用选择性刻蚀制作出梳齿形的侧壁,改进了DRAM中深槽式电容器的结构,简化了制作工艺。
-
公开(公告)号:CN101958270A
公开(公告)日:2011-01-26
申请号:CN201010223124.8
申请日:2010-07-09
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
IPC: H01L21/762 , H01L21/265
Abstract: 本发明涉及一种绝缘体上超薄应变材料的制备方法,其特征在于在选定的半导体衬底材料上外延生长一层半导体材料,该外延生长的半导体材料厚度在临界厚度以内,且使晶体处于完全应变状态,接着进行氧离子注入,使氧离子主要分布在半导体衬底材料中,最后进行800-1200℃高温退火,在形成绝缘埋层的同时,使外延生长的半导体材料顶部发生弛豫,将应力转移到衬底材料的顶部中去,形成新的应变层。所制备的超薄应变材料层≤50nm。本发明只需一步氧离子注入结合外延工艺而省去键合和剥离工艺,使绝缘体上硅得以简单实现。
-
公开(公告)号:CN101916741A
公开(公告)日:2010-12-15
申请号:CN201010223281.9
申请日:2010-07-09
Applicant: 中国科学院上海微系统与信息技术研究所 , 上海新傲科技股份有限公司
IPC: H01L21/762
Abstract: 本发明涉及一种绝缘体上应变硅制备方法,其特征在于将SOI的顶层硅热氧化减薄至10-30nm,然后在超薄的顶层硅上外延Si1-xGex,Si1-xGex应变层的厚度不超过其临界厚度;进行离子注入,选择合适的能量,使离子注入到埋氧和衬底硅的界面;进行退火工艺,使应变的Si1-xGex层进行弛豫,同时,顶层硅受到拉伸的应力,离子注入使得埋氧和衬底硅的界面疏松,顶层硅成为应变硅;将剩余的Si1-xGex层移除,得到所需的应变硅材料。由此可见,本发明的最大优点是通过离子注入和外延工艺,而不需要键合工艺,直接将外延SiGe材料的应力反转,直接将应力转移到绝缘体上硅的顶层硅中,从而可望大大简化绝缘体上应变硅的制备工艺。
-
-
-
-
-
-
-
-
-