-
公开(公告)号:CN110935826A
公开(公告)日:2020-03-31
申请号:CN201811111393.8
申请日:2018-09-23
Applicant: 哈尔滨工业大学(威海)
Abstract: 涉及材料加工领域一种新型的铜合金锥形壳体成形方法,适用于紫铜及白铜。主要步骤为:1、切取铜合金铸锭作为初始坯料;2、对铜合金初始坯料进行多向锻造,若坯料满足晶粒度≤10μm、织构强度因子≤6的要求后,将坯料滚圆加工为细晶铜合金棒料;3、在细晶铜合金棒料中截取一定直径和高度的坯料;4、对截取的铜合金坯料进行冷挤压-热处理梯度耦合加工,通过总共4道次加工使铜合金构件逐级达到晶粒度≤3μm、织构强度因子≤9的指标,成形得到细晶弱织构铜合金锥形壳体。本发明能够通过工艺参数优化有效控制铜合金锥形壳体的晶粒尺寸及织构强度,所制备出的产品晶粒细小、织构强度低、组织均匀、性能稳定,拥有良好的尺寸精度和力学性能。
-
公开(公告)号:CN110482528A
公开(公告)日:2019-11-22
申请号:CN201910785921.6
申请日:2019-08-23
Applicant: 哈尔滨工业大学
IPC: C01B32/16 , C01B32/168 , C01G49/08 , C04B30/00 , G01D5/16 , H01F1/00 , H01F41/02 , B82Y30/00 , B82Y40/00 , C04B111/40 , C04B111/94
Abstract: 本发明公开了一种具有负巨磁阻性能的碳纳米管/四氧化三铁复合海绵制备方法,所述方法包括如下步骤:步骤一、配置碳纳米管前驱体溶液;步骤二、碳纳米管海绵的制备;步骤三、配置Fe3O4前驱体溶液;步骤四、碳纳米管/Fe3O4复合海绵的制备;步骤五、碳纳米管/Fe3O4复合海绵石墨烯带海绵的洗涤;骤六、碳纳米管/Fe3O4复合海绵的干燥。本发明采用化学气相沉积方法制备出碳纳米管海绵,借助其三维多孔网络结构,通过多元醇方法在内部生长出Fe3O4纳米颗粒米,进而制备出具有负巨磁阻性能的碳纳米管/Fe3O4复合海绵。本发明在保持碳纳米管海绵的轻质、高电导率的性能同时,大幅度提升其巨磁阻性能。
-
公开(公告)号:CN106114916B
公开(公告)日:2018-06-08
申请号:CN201610659748.1
申请日:2016-08-12
Applicant: 哈尔滨工业大学
IPC: B64G1/62
Abstract: 一种充气展开的周期性囊瓣式减速器及其卷曲折叠收拢方法,属于进入式航天器进入轨道使用的减速器技术领域,解决了现有的充气展开减速器存在的问题,一种充气展开的周期性囊瓣式减速器,它包含球缺形的刚性头锥,围绕刚性头锥设置有一个由周期性囊瓣构成的伞状的气囊,气囊由下至上沿抛物线向外侧扩张,形成变曲率的外表面,在气囊内沿每两个相邻囊瓣的接缝处均设置有一组张拉索,围绕气囊的最大直径处设置有一个扰流气环;在刚性头锥内侧设置有水平质心控制盘;在刚性头锥内侧还设置有安插箱;上述一种充气展开的周期性囊瓣式减速器的卷曲折叠收拢方法,采用W形和星形向心收拢并结合环向缠绕方法折叠;本发明用于空间飞行器减速。
-
公开(公告)号:CN102056182A
公开(公告)日:2011-05-11
申请号:CN201010584694.X
申请日:2010-12-13
Applicant: 哈尔滨工业大学
IPC: H04W16/22
Abstract: 一种基于LS-SVM的移动话务量预测方法,属于移动通信领域,本发明为解决现有技术采用LS-SVM进行话务量预测只能实现单步预测,且算法本身不能对输入变量进行有效而合理的选择,进而造成准确性差、速度慢的问题。本发明方法包括以下:1.选取离当前时刻之前一个月之内的话务量历史数据作为训练样本进行LS-SVM建模,获取LS-SVM预测模型;2.对新输入样本进行预处理;3.将处理后的新输入样本输入给LS-SVM预测模型,输出预测值;4.判断是否需要更新LS-SVM预测模型;如需要更新,则返回一;如不需要更新,执行五,5.将三输出的预测值作为当前时刻的话务量数据,并返回执行二,对下一时刻的话务量进行预测。
-
公开(公告)号:CN119956168A
公开(公告)日:2025-05-09
申请号:CN202510185384.7
申请日:2025-02-19
Applicant: 哈尔滨工业大学(威海)
Abstract: 本申请公开了一种复合微合金化铝合金,按照质量百分比计,由以下组分构成:Si 0.7%‑1.3%,Mg 0.6%‑1.2%,Mn 0.4%‑1.0%,微合金元素0.2%‑0.6%,余量为Al;其中,所述微合金元素为Sc和Cr,或,所述微合金元素为Sc、Cr和Zr。通过微合金元素的添加,使本申请所得的铝合金在室温以及高温均具有优异的力学性能,本申请还公开了上述铝合金的凝固成形制备工艺,并通过超声波辅助振动进一步促进元素均匀分散,提高整体性能。
-
公开(公告)号:CN119952038A
公开(公告)日:2025-05-09
申请号:CN202510185391.7
申请日:2025-02-19
Applicant: 哈尔滨工业大学(威海)
Abstract: 本申请属于材料加工技术领域,具体涉及一种铸造热裂纹抑制方法及使用该抑制方法的组合模具。该抑制方法包括以下步骤:基于所需铸件的形状设计模具形状;基于模具形状进行铸造过程数值模拟;基于数值模拟的结果分析熔体冷却过程温度场,并确定温度梯度较小的区域;将温度梯度较小区域对应的模具替换为热控镶块,其余区域的普通模具保持不变;使用普通模具与热控镶块构成的组合模具对熔体进行成形。本申请将传统均质凝固模具升级为镶块式组合模具,包括普通模具与热控镶块。通过高导热、高硬度异质或内置冷却流道同质热控镶块,提高散热效率,调控熔体过冷度,细化晶粒,避免孤立液相,降低拉应力,抑制热裂纹,实现高效、经济、易操作的铸造。
-
公开(公告)号:CN118908731B
公开(公告)日:2025-04-04
申请号:CN202410971582.1
申请日:2024-07-19
Applicant: 哈尔滨工业大学(威海)
IPC: C04B35/565 , F26B5/06 , B28B1/00 , B28B11/24 , B28B23/00 , C04B35/58 , C04B35/597 , C04B35/583 , C04B35/584 , C04B35/622 , C04B35/80 , C04B38/06
Abstract: 本申请涉及陶瓷基复合材料技术领域,具体涉及一种纤维增强功能梯度层状陶瓷基复合材料及其制备方法、装置,包括以下步骤:制备纤维预制体,制备水基陶瓷浆料,将水基陶瓷浆料浸渍到纤维预制体中,后进行冷冻干燥,在保护气氛下反复进行3~6次浸渍裂解,再将其放入热压炉中进行热压处理,最终得到纤维增强功能梯度层状陶瓷基复合材料,该功能梯度层状纤维陶瓷增强陶瓷基复合材料包括外层致密层和内层疏松层。本申请通过料浆工艺、冷冻干燥法、浸渍裂解法以及热压辅助多种工艺的混合使用,能够快速实现致密化,同时,制备周期缩短、成本也得到了降低,同时,该功能梯度层状纤维陶瓷增强陶瓷基复合材料抗烧蚀能力优异且在满足防热需求的同时重量较轻。
-
公开(公告)号:CN119609025A
公开(公告)日:2025-03-14
申请号:CN202411832639.6
申请日:2024-12-12
Applicant: 哈尔滨工业大学(威海)
Abstract: 本申请涉及一种组合脉冲局部加载连续缩口成形方法,采用薄壁管材作为初始坯料,沿轴向连续设置至少两组阵列式锤头进行脉冲径向加载运动,锤头工作面构成的轮廓适配于连续变形段的结构变化。坯料沿轴向进入高频脉冲加载区域,前端壁部在高频、局部小变形量脉冲加载作用下径向尺寸减小。随后继续使坯料沿轴向进给,未变形区前端部分不断进入加载区域,连续均匀累积变形量。本方法可适用于变径、变曲率等不同复杂特征的构件,相比传统缩口方式可改变变形模式,抑制失稳起皱缺陷,提高缩口成形极限。尤其对大长径比、大径厚比极端尺寸特征复合、长距离连续变形段等复杂结构的大尺寸构件有显著优势。
-
公开(公告)号:CN115922058A
公开(公告)日:2023-04-07
申请号:CN202310061003.5
申请日:2023-01-16
Applicant: 哈尔滨工业大学(威海) , 中国兵器装备集团西南技术工程研究所
IPC: B23K20/12
Abstract: 本发明提供了一种基于强变形原位粉末冶金改善镁合金构件表面耐蚀性的方法,包括:镁合金构件表面进行清洁处理;调节焊机的主轴倾角使主轴轴线与镁合金构件表面法线之间呈设定倾斜角度;启动送粉装置和冷却设备,送粉装置用于往加工部位压入稀土元素粉末,冷却设备用于对加工部位进行冷却;启动搅拌摩擦焊机,控制加工工具以设定旋转速度压入镁合金构件内,并沿预设轨迹移动;停机、冷却。采用本发明能够使构件表层组织稀土合金化、晶粒细化即组织均匀化,有效改善镁合金构件表面的耐蚀性,简化了工艺流程,节省了制备成本,同时该方法可灵活调整加工工具尺寸以实现不同尺寸、不同厚度镁合金构件的加工处理,可实施性强、灵活度高。
-
公开(公告)号:CN112301298B
公开(公告)日:2022-08-02
申请号:CN202011000018.3
申请日:2020-09-22
Applicant: 哈尔滨工业大学(威海)
IPC: C22C47/12 , C22C49/06 , C22C49/14 , B22D18/02 , C22F1/057 , B22D23/04 , C22C101/10 , C22C101/14 , C22C101/04 , C22C101/18
Abstract: 本发明提供了一种轻质耐热高刚度多元增强铝基复合材料及其制备方法,采用碳纳米管(CNTs)、碳化硅晶须(SiCw)和二硼化钛(TiB2)制备三元混杂增强铝基复合材料,基于各增强体性能优势以及多元异质增强体协同强化效应提升铝基复合材料的综合性能。本发明提供的制备方法,技术原理是采用CNTs·SiCw混杂预制件制备—TiB2/Al复合材料熔体制备—挤压浸渗制备铝基复合材料的工艺路线,首先将CNTs和SiCw混合后采用模压法压制CNTs·SiCw混杂预制件,并进行烘干和烧结,之后采用原位自生法制备TiB2/Al复合材料熔体,最后采用含有增强体的TiB2/Al复合材料熔体浇注多孔混杂预制件并进行挤压铸造液态浸渗制备CNTs·SiCw·TiB2/Al铝基复合材料。
-
-
-
-
-
-
-
-
-