-
公开(公告)号:CN112301298A
公开(公告)日:2021-02-02
申请号:CN202011000018.3
申请日:2020-09-22
Applicant: 哈尔滨工业大学(威海)
IPC: C22C47/12 , C22C49/06 , C22C49/14 , B22D18/02 , C22F1/057 , B22D23/04 , C22C101/10 , C22C101/14 , C22C101/04 , C22C101/18
Abstract: 本发明提供了一种轻质耐热高刚度多元增强铝基复合材料及其制备方法,采用碳纳米管(CNTs)、碳化硅晶须(SiCw)和二硼化钛(TiB2)制备三元混杂增强铝基复合材料,基于各增强体性能优势以及多元异质增强体协同强化效应提升铝基复合材料的综合性能。本发明提供的制备方法,技术原理是采用CNTs·SiCw混杂预制件制备—TiB2/Al复合材料熔体制备—挤压浸渗制备铝基复合材料的工艺路线,首先将CNTs和SiCw混合后采用模压法压制CNTs·SiCw混杂预制件,并进行烘干和烧结,之后采用原位自生法制备TiB2/Al复合材料熔体,最后采用含有增强体的TiB2/Al复合材料熔体浇注多孔混杂预制件并进行挤压铸造液态浸渗制备CNTs·SiCw·TiB2/Al铝基复合材料。
-
公开(公告)号:CN118497507A
公开(公告)日:2024-08-16
申请号:CN202410782729.2
申请日:2024-06-17
Applicant: 哈尔滨工业大学(威海)
IPC: C22B9/16
Abstract: 本申请涉及半固态金属成形技术领域,具体涉及一种超声辅助感应重熔短流程快速制备半固态坯料的方法,包括以下步骤:步骤100,测定金属坯料的半固态温度区间及液相率‑温度的对应关系;步骤200,将金属坯料放入超声重熔模具中;步骤300,将超声重熔模具放入感应线圈中心;步骤400,对金属坯料进行半固态重熔处理;步骤500,在超声重熔模具上施加超声振动;步骤600,半固态重熔结束后从超声重熔模具中取出即得到半固态坯料。本申请中的制备半固态坯料的方法中,超声振动形成的高能超声场与感应加热形成的均匀温度场对半固态组织产生协同优化作用,实现具有尺寸细小且均匀分布的球晶组织的半固态坯料的短流程快速制备。
-
公开(公告)号:CN112301298B
公开(公告)日:2022-08-02
申请号:CN202011000018.3
申请日:2020-09-22
Applicant: 哈尔滨工业大学(威海)
IPC: C22C47/12 , C22C49/06 , C22C49/14 , B22D18/02 , C22F1/057 , B22D23/04 , C22C101/10 , C22C101/14 , C22C101/04 , C22C101/18
Abstract: 本发明提供了一种轻质耐热高刚度多元增强铝基复合材料及其制备方法,采用碳纳米管(CNTs)、碳化硅晶须(SiCw)和二硼化钛(TiB2)制备三元混杂增强铝基复合材料,基于各增强体性能优势以及多元异质增强体协同强化效应提升铝基复合材料的综合性能。本发明提供的制备方法,技术原理是采用CNTs·SiCw混杂预制件制备—TiB2/Al复合材料熔体制备—挤压浸渗制备铝基复合材料的工艺路线,首先将CNTs和SiCw混合后采用模压法压制CNTs·SiCw混杂预制件,并进行烘干和烧结,之后采用原位自生法制备TiB2/Al复合材料熔体,最后采用含有增强体的TiB2/Al复合材料熔体浇注多孔混杂预制件并进行挤压铸造液态浸渗制备CNTs·SiCw·TiB2/Al铝基复合材料。
-
公开(公告)号:CN118385540A
公开(公告)日:2024-07-26
申请号:CN202410496179.8
申请日:2024-04-23
Applicant: 哈尔滨工业大学(威海)
Abstract: 本申请涉及仿生复合材料制备领域,具体涉及一种实现仿生层状陶瓷金属复合材料快速制备的超声辅助熔渗方法,包括以下步骤:制备多孔陶瓷预制体;将超声熔渗模具预热至预设温度,将所述多孔陶瓷预制体预热至预设温度,并放入所述超声熔渗模具中;将预浸渗合金进行熔化处理,得到熔融合金;向所述超声熔渗模具中浇注所述熔融合金,直至完全覆盖所述多孔陶瓷预制体;在所述超声熔渗模具上施加超声波振动;熔渗完成后从所述超声熔渗模具中取出并冷却至室温,得到仿生层状陶瓷金属复合材料。本申请中使用超声辅助熔渗方法促进熔融合金向多孔陶瓷预制体层状孔隙内的浸渗,实现在无保护气的大气环境下层状陶瓷金属复合材料的快速制备。
-
-
-