一种航天器姿控系统PWPF调制器参数确定方法

    公开(公告)号:CN112596390A

    公开(公告)日:2021-04-02

    申请号:CN202011510681.8

    申请日:2020-12-18

    Abstract: 一种航天器姿控系统PWPF调制器参数确定方法,属于航天器姿控技术领域。解决了现有航天器姿控系统调制器参数确定方法通用性差,准确性低的问题。本发明初始化粒子群,确定待优化参数;利用粒子群对待优化的航天器模型进行姿态控制仿真;获得控制器输出和角位置误差;并构建适应度函数;计算每个粒子的个体适应度;利用本粒子群优化算法,对粒子群中每个粒子的速度、位置更新,计算更新后的每个粒子的个体适应度、最优位置和最优速度,获取所有粒子该次更新粒子个体适应度获取每一次更新计算的群体最优适应度函数、个体历史最优位置、群体历史最优位置;获取一组最优PWPF调制器参数值。本发明是用于航天器姿态控制系统参数确定。

    一种辨识组合体航天器质量、质心位置和惯性张量的方法

    公开(公告)号:CN110146224B

    公开(公告)日:2021-02-09

    申请号:CN201910432774.4

    申请日:2019-05-22

    Abstract: 一种辨识组合体航天器质量、质心位置和惯性张量的方法,属于航天器的模型参数辨识领域。本发明为了解决在轨服务任务中捕获目标后产生的组合体航天器的质量、质心位置和惯性张量未知,从而无法实时对组合体航天器进行有效控制的问题。具体实现步骤如下:步骤一:航天器抓捕目标后形成组合体;步骤二:由步骤一中的航天器上的执行器对整个组合体航天器产生激励,得到组合体航天器的状态变化,继而根据激励输入和状态输出建立参数辨识数据库;步骤三:选择合适的辨识准则,计算待辨识参数。本发明能够只利用一个空间机械臂一步辨识出所有质量特性。

    一种柔性触手的形状检测系统及方法

    公开(公告)号:CN109955234A

    公开(公告)日:2019-07-02

    申请号:CN201910342580.5

    申请日:2019-04-25

    Abstract: 一种柔性触手的形状检测系统及方法,涉及形状检测技术领域。本发明为了能够对一段以及多段柔性触手进行实时形状检测。所述检测系统包括工控上位机、九个拉线式位移传感器、三个控制器、无线蓝牙通讯模块、直流稳压电源、两个降压芯片和控制器;对柔性触手进行充气;主、从控制器STM32对脉冲信号解码并计数;通过无线蓝牙模块,将九根气动肌肉的长度数据无线传送到工控上位机;在工控上位机中使用MATLAB软件中的GUIDE制作串口助手界面,完成一段柔性触手运动学模型的建立以及多段柔性触手运动学模型的建立,仿真出柔性触手的三维空间形状。本发明能满足实时检测柔性触手三维形状的要求。

    一种限定时间的航天器共面交会变轨策略确定方法

    公开(公告)号:CN109592079A

    公开(公告)日:2019-04-09

    申请号:CN201811467765.0

    申请日:2018-12-03

    Abstract: 一种限定时间的航天器共面交会变轨策略确定方法,属于限定时间的航天器共面交会领域。现有的航天器交会技术对光照条件的要求比较低,导致交会时刻观测效果差,影响交会算法计算精度的问题。本发明通过计算目标航天器与服务航天器之间整个交会过程理论上的限定时间;之后计算服务航天器变轨过程中的两次速度增量以及转移轨道所用时间;再计算优化变量服务航天器在初始轨道的运动时间和在目标轨道的运动时间的初值;对交会过程积分得到服务航天器和目标航天器在交会时刻的位置矢量及二者夹角;当夹角达到0°时,将此时在初始轨道的运动时间和在目标轨道的运动时间作为变轨参数和变轨策略。本发明方法的计算结果精确,迭代计算过程简单。

    基于遗传算法的空间碎片主动清除任务规划方法

    公开(公告)号:CN107341578A

    公开(公告)日:2017-11-10

    申请号:CN201710612737.2

    申请日:2017-07-25

    CPC classification number: G06Q10/047 G06F17/18 G06N3/126

    Abstract: 基于遗传算法的空间碎片主动清除任务规划方法,涉及一种空间碎片主动清除任务规划方法。本发明为了解决现有的遗传算法的编码方式和交叉、变异操作容易导致空间碎片主动清除任务规划陷入局部最优的问题。本发明将任务规划的方法用到碎片抓捕路径优化问题上,首先针对平台的任务特点,设定碎片清除任务;然后将平台任务规划问题数学建模为旅行商城市路径最短问题。针对于空间碎片的特点分别设计了适用于机械臂抓捕方案的适应度函数以及适用于飞网和机械臂抓捕方案的适应度函数;并设定特定的遗传参数,采用遗传算法进行优化求解,能够很快的实现收敛,规划出空间碎片的抓捕路径。本发明适用于空间碎片主动清除任务规划。

    基于SmartFusion2的卫星姿轨控制系统及其PID控制方法

    公开(公告)号:CN104155997B

    公开(公告)日:2017-02-08

    申请号:CN201410421658.X

    申请日:2014-08-25

    Abstract: 基于SmartFusion2的卫星姿轨控制系统及其PID控制方法,属于卫星姿轨控制领域。为了解决目前的航天器姿轨控制系统硬件电路复杂、体积大及成本高的问题。本发明的核心处理器采用在单一芯片上集成了固有可靠性的快闪FPGA架构、一个166MHz ARM Cortex-M3处理器、安全处理加速器、DSP模块、SRAM、eNVM和多个通信接口模块的SmartFusion2芯片实现的,并配以AD模块、陀螺模块、无线模块和底板模块,完成卫星姿轨控制;所述底板模块包括多个通信接口、控制电源、状态输入接口、OC驱动接口、调试接口和复位电路;本发明的PID控制方法分别通过核心处理器和上位机对接收的数据判断、解算和打包,并形成闭环。本发明用于卫星姿轨控制。

    基于燃料最优的火星探测器着陆制导方法

    公开(公告)号:CN104590589B

    公开(公告)日:2016-06-29

    申请号:CN201410802923.9

    申请日:2014-12-22

    Abstract: 基于燃料最优的火星探测器着陆制导方法,涉及一种火星软着陆的制导方法,属于深空探测技术领域。本发明解决了现有的显式制导律不能实现燃料最优制导以及最优制导律必须存储整条轨迹导致需占用探测器较大存储空间的问题。本发明的技术方案为:探测器燃料最优解的获取;设置路径点并建立路径点库;设计线性反馈制导律,若探测器初始状态信息与路径点库的路径点信息匹配,则实施着陆,否则进行路径点拟合后实施着陆。本发明提出的“路径点+线性制导律”的制导策略,能够基于较小的存储空间实现火星探测器动力下降段的燃料最优制导。本发明适用于火星探测器在动力下降段的制导律。

    微陀螺测量系统及采用该系统测量零偏稳定性的方法

    公开(公告)号:CN104197957A

    公开(公告)日:2014-12-10

    申请号:CN201410421588.8

    申请日:2014-08-25

    CPC classification number: G01C25/00

    Abstract: 微陀螺测量系统及采用该系统测量零偏稳定性的方法,涉及微陀螺芯片的性能测试技术。它为了解决现有技术中缺少针对微陀螺芯片性能进行大量数据测试与比较的系统,导致对微陀螺的选择只能基于数据手册上的性能指标的问题。本发明采用STM32F103C8型芯片作为核心处理器与微陀螺进行通信,首先对微陀螺进行配置,然后将微陀螺测得的角速度等信息通过无线方式发送至上位机,再由上位机对数据进行处理,通过Allan方差来计算得到微陀螺的零偏稳定性。本发明结构简单,能够采集大量的微陀螺测得的数据,并通过软件对数据进行处理,得到微陀螺的零偏稳定性为微陀螺的选用提供可靠依据。本发明适用于微机械陀螺的应用。

    基于阻力预测的火星大气进入路径约束处理方法

    公开(公告)号:CN116150997B

    公开(公告)日:2025-03-14

    申请号:CN202310150018.9

    申请日:2023-02-22

    Abstract: 基于阻力预测的火星大气进入路径约束处理方法,属于制导律设计技术领域,本发明为解决现有技术存在探测器的高精度跟踪参考轨迹与安全状态无法兼顾的问题。它包括:根据探测器的物理参数和路径约束条件获得路径约束控制量;根据探测器进入火星大气的期望进入位置和终端位置获得探测器的期望跟踪轨迹;根据探测器的期望跟踪轨迹,获得跟踪制导律,输出期望控制量,对期望控制量进行限幅计算,获得探测器的实际控制量;根据探测器的实际控制量,获得探测器的动力学方程,对探测器进入火星大气的进入路径进行约束。本发明用于对火星大气进入过程的路径约束进行在线修正。

    火星大气进入过程轨迹跟踪制导系统及方法

    公开(公告)号:CN116039960B

    公开(公告)日:2025-01-24

    申请号:CN202310144161.7

    申请日:2023-02-21

    Abstract: 火星大气进入过程轨迹跟踪制导系统及方法,解决了如何在尽量不损害制导律快速性的同时实现抗饱和效果的问题,属于火星探测技术领域。本发明包括:控制器根据高度跟踪误差e和抗饱和辅助变量χ,结合制导律获得期望控制量uc,制导律中的被控量y=e+χ,根据uc结合控制约束计算实际控制量u,根据实际控制量u按照参考轨迹进行制导;抗饱和辅助系统根据上一时刻的期望控制量uc和实际控制量u获取Δu,Δu=u‑uc,获取抗饱和辅助变量χ:#imgabs0#本发明使得制导系统快速退出饱和工作区,在饱和消失时补偿量能够在有限时间内快速收敛至0。

Patent Agency Ranking