标注样本的方法及装置、电子设备、存储介质

    公开(公告)号:CN117576578A

    公开(公告)日:2024-02-20

    申请号:CN202311478400.9

    申请日:2023-11-08

    Abstract: 本申请涉及深度学习技术领域,公开一种标注样本的方法,包括:按照设定的待限定尺寸在原始图像中限定出至少一个待标注图像;将每个待标注图像中的标注坐标转换成在所述原始图像中的绝对坐标,获得包含有绝对坐标的原始图像。这样,使得待标注图像中目标对象的标注坐标能够直接显示在原始图像中,进而在进行深度学习时,能够根据目标对象的标注坐标和神经网络模型的图像尺寸需求对原始图像进行切割,从而实现带有目标对象绝对坐标的原始图像能够在多个尺寸要求不同的神经网络模型中复用的效果。本申请还公开一种标注样本的装置、电子设备和存储介质。

    一种基于生成对抗网络的SAR时敏目标样本增广方法

    公开(公告)号:CN111368935B

    公开(公告)日:2023-06-09

    申请号:CN202010188535.1

    申请日:2020-03-17

    Abstract: 本发明一种基于生成对抗网络的SAR时敏目标样本增广方法,步骤如下:1)构建区域卷积生成对抗网络,实现两模型的前向与反向传播功能;2)制作区域卷积生成对抗网络训练数据集,从目标检测训练数据集中提取切片;3)对区域卷积生成对抗网络进行训练,利用对抗网络训练数据集对区域卷积生成对抗网络进行迭代训练,直到区域卷积生成对抗网络中的生成模型获得稳定且符合期望的输出结果,并保存生成模型与判别模型的权重;4)调整参数批量生成样本,对完成训练的区域卷积生成对抗网络中生成模型装订所保存的参数,根据实际使用需求设置参数输入至生成模型,生成符合期望框体的样本;5)制作用于目标检测识别算法训练的数据集。

Patent Agency Ranking