-
公开(公告)号:CN114066979B
公开(公告)日:2025-03-14
申请号:CN202111186916.7
申请日:2021-10-12
Applicant: 北京航天自动控制研究所
IPC: G06T7/73 , G06T3/4046 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种目标样本标注生成方法,属于深度学习技术领域,解决多个需求不同图片大小的目标样本的神经网络中复用的问题。方法包括:根据预设重叠比例、预切割小图尺寸及预设外扩比例对大图进行切割;对切割得到的小图中的目标样本进行标注,得到标注点在各小图上的相对坐标;根据相对坐标对应小图相对于大图的切割位置、在各小图上的相对坐标、所述预设重叠比例、所述预切割小图尺寸及所述预设外扩比例,确定各标注点在所述大图上的绝对坐标,得到包含有标注点绝对坐标的大图。
-
公开(公告)号:CN111401210B
公开(公告)日:2023-08-04
申请号:CN202010167033.0
申请日:2020-03-11
Applicant: 北京航天自动控制研究所
Inventor: 郝梦茜 , 张辉 , 周斌 , 靳松直 , 丛龙剑 , 刘严羊硕 , 郑文娟 , 韦海萍 , 王浩 , 张伯川 , 王亚辉 , 张聪 , 刘燕欣 , 高琪 , 肖利平 , 倪少波 , 杨柏胜
IPC: G06V20/10 , G06V10/774 , G06V10/82 , G06N3/0464 , G06T7/62
Abstract: 一种基于模板框增广的提高小目标检测稳定性的方法,步骤一:遍历全部训练样本的标注信息,提取标注信息中的目标尺寸;步骤二:计算目标尺寸参考最小值和目标尺寸参考最大值;步骤三:根据目标尺寸参考最小值、目标尺寸参考最大值、训练图像原始尺寸以及模型输出的特征层个数,计算各层关注目标的归一化尺寸;步骤四:根据各层关注目标归一化尺寸以及各特征层尺寸,计算各特征层模板框期望间距;步骤五:根据各特征层模板框期望间距,确定各特征层模板框个数与模板框中心点位置,进行模板框增广;步骤六:对完成模板框增广的卷积神经网络进行训练,得到对小目标检测的卷积神经网络模型。本发明降低算法对小目标位置的敏感度,提高小目标检测的稳定性。
-
公开(公告)号:CN114066979A
公开(公告)日:2022-02-18
申请号:CN202111186916.7
申请日:2021-10-12
Applicant: 北京航天自动控制研究所
Abstract: 本发明公开了一种目标样本标注生成方法,属于深度学习技术领域,解决多个需求不同图片大小的目标样本的神经网络中复用的问题。方法包括:根据预设重叠比例、预切割小图尺寸及预设外扩比例对大图进行切割;对切割得到的小图中的目标样本进行标注,得到标注点在各小图上的相对坐标;根据相对坐标对应小图相对于大图的切割位置、在各小图上的相对坐标、所述预设重叠比例、所述预切割小图尺寸及所述预设外扩比例,确定各标注点在所述大图上的绝对坐标,得到包含有标注点绝对坐标的大图。
-
公开(公告)号:CN117576578A
公开(公告)日:2024-02-20
申请号:CN202311478400.9
申请日:2023-11-08
Applicant: 北京航天自动控制研究所
Abstract: 本申请涉及深度学习技术领域,公开一种标注样本的方法,包括:按照设定的待限定尺寸在原始图像中限定出至少一个待标注图像;将每个待标注图像中的标注坐标转换成在所述原始图像中的绝对坐标,获得包含有绝对坐标的原始图像。这样,使得待标注图像中目标对象的标注坐标能够直接显示在原始图像中,进而在进行深度学习时,能够根据目标对象的标注坐标和神经网络模型的图像尺寸需求对原始图像进行切割,从而实现带有目标对象绝对坐标的原始图像能够在多个尺寸要求不同的神经网络模型中复用的效果。本申请还公开一种标注样本的装置、电子设备和存储介质。
-
公开(公告)号:CN117541886A
公开(公告)日:2024-02-09
申请号:CN202311270936.1
申请日:2023-09-28
Applicant: 北京航天自动控制研究所
Abstract: 本申请提供了一种适用于任意角度旋转标注的图像增广方法和装置,通过对原始目标框内的目标进行分割,得到目标连通域,并对目标连通域内所有像素点坐标进行旋转变化,最后计算旋转之后的像素点在X方向、Y方向的坐标最小值和最大值作为新目标框的左上顶点坐标和右下顶点坐标。对于样本数量很少、目标角度固定的图像数据集,使用本申请可以产生大量新的训练样本,实现图像场景中可能出现的不同角度目标的全覆盖,有效节约了收集和标注图像数据集带来的时间、人力、资金等成本。
-
公开(公告)号:CN111523392B
公开(公告)日:2023-06-06
申请号:CN202010224330.4
申请日:2020-03-26
Applicant: 北京航天自动控制研究所
IPC: G06V20/10 , G06V10/774 , G06V10/764 , G06N20/00
Abstract: 本发明一种基于卫星正射影像全姿态的深度学习样本制备方法及目标识别方法,(1)利用目标的卫星正射影像数据,使用光线追踪的方法,生成飞行器与目标在不同距离、不同方位角、不同高低角下的目标区图像(也是待参与深度学习训练的样本);(2)将所述目标区图像进行灰度反转处理,得到样本;(3)将所述目标区图像进行高斯模糊处理,得到样本;(4)将所述目标区图像进行对数变换,得到样本;(5)调整所述目标区图像亮度,得到样本;(6)对所述目标区图像进行直方图均衡化,得到样本;(7)将步骤(1)~(6)的样本形成最终的待参与深度学习训练的样本集;有利于提高对飞行器实际拍摄的目标图像进行识别的准确率。
-
公开(公告)号:CN111524098A
公开(公告)日:2020-08-11
申请号:CN202010265447.7
申请日:2020-04-07
Applicant: 北京航天自动控制研究所
Inventor: 郝梦茜 , 张辉 , 周斌 , 杨柏胜 , 倪少波 , 靳松直 , 丛龙剑 , 刘严羊硕 , 郑文娟 , 韦海萍 , 田爱国 , 邵俊伟 , 李建伟 , 张孝赫 , 张连杰 , 张艺明
Abstract: 本发明涉及一种基于自组织聚类的神经网络输出层裁剪及模板框尺寸确定方法,属于卷积神经网络的目标检测识别技术领域,特别提供了一种针对SSD算法的网络输出层裁剪及模板框尺寸确定方法。使用自组织聚类可以在不确定目标尺寸分布的情况下获得更好的聚类结果,使用聚类结果计算目标上限面积,确定输出层层数,删掉感受野过大、层数过深的输出层,减少网络深度和参数数量,降低模型训练的难度,加快模型收敛,提高模型泛化能力,减少计算耗时,提高计算效率。
-
公开(公告)号:CN111523564A
公开(公告)日:2020-08-11
申请号:CN202010213403.X
申请日:2020-03-24
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种用于深度学习训练的SAR时敏目标样本增广方法,属于图像处理技术和深度学习领域;包括如下步骤:步骤一、对目标所在区域拍摄分辨率为a米的异源SAR图集,转换成分辨率为b米的异源SAR图集;步骤二、找到全部目标,并将每个目标制作成SAR时敏目标切片,获得切片集;步骤三、从异源SAR图集中各图片截取背景图像,获得背景图像集;步骤四、对切片集中各切片进行优化处理;步骤五、建立时敏目标的学习样本集;步骤六、旋转时敏目标的学习样本,获得不同角度下的学习样本;本发明解决了因样本数量较少以及未考虑深度学习网络特点而导致深度学习训练效果不好的问题。
-
公开(公告)号:CN111539600B
公开(公告)日:2023-09-01
申请号:CN202010265424.6
申请日:2020-04-07
Applicant: 北京航天自动控制研究所
Inventor: 郝梦茜 , 张辉 , 周斌 , 肖利平 , 唐波 , 杨柏胜 , 倪少波 , 田爱国 , 邵俊伟 , 李建伟 , 张孝赫 , 张连杰 , 靳松直 , 丛龙剑 , 刘严羊硕 , 郑文娟 , 韦海萍 , 刘燕欣 , 高琪 , 王浩 , 张聪 , 张伯川 , 王亚辉
IPC: G06Q10/0637 , G06N3/0464
Abstract: 一种基于测试的神经网络目标检测稳定性评价方法,对测试图片进行位置、尺度、旋转、亮度、加噪与平滑变换,使用变换后的图片对神经网络进行测试,统计测试结果在不同变化情况下置信度的标准差以及定位准确度的标准差,并将各标准差进行综合得到神经网络目标检测稳定性综合评价结果。本发明提出的评价方法能够评估神经网络面对目标位置、尺度、旋转、亮度、噪声与平滑变化情况下保持对目标稳定检测的能力,可作为神经网络在面对变化或扰动情况下目标检测可靠性评价指标的一种,有利于从不同侧面评价神经网络的性能。
-
公开(公告)号:CN111523564B
公开(公告)日:2023-05-12
申请号:CN202010213403.X
申请日:2020-03-24
Applicant: 北京航天自动控制研究所
IPC: G06V10/774 , G06V10/20 , G06V20/13 , G06N20/00
Abstract: 本发明涉及一种用于深度学习训练的SAR时敏目标样本增广方法,属于图像处理技术和深度学习领域;包括如下步骤:步骤一、对目标所在区域拍摄分辨率为a米的异源SAR图集,转换成分辨率为b米的异源SAR图集;步骤二、找到全部目标,并将每个目标制作成SAR时敏目标切片,获得切片集;步骤三、从异源SAR图集中各图片截取背景图像,获得背景图像集;步骤四、对切片集中各切片进行优化处理;步骤五、建立时敏目标的学习样本集;步骤六、旋转时敏目标的学习样本,获得不同角度下的学习样本;本发明解决了因样本数量较少以及未考虑深度学习网络特点而导致深度学习训练效果不好的问题。
-
-
-
-
-
-
-
-
-