一种目标样本标注生成方法

    公开(公告)号:CN114066979B

    公开(公告)日:2025-03-14

    申请号:CN202111186916.7

    申请日:2021-10-12

    Abstract: 本发明公开了一种目标样本标注生成方法,属于深度学习技术领域,解决多个需求不同图片大小的目标样本的神经网络中复用的问题。方法包括:根据预设重叠比例、预切割小图尺寸及预设外扩比例对大图进行切割;对切割得到的小图中的目标样本进行标注,得到标注点在各小图上的相对坐标;根据相对坐标对应小图相对于大图的切割位置、在各小图上的相对坐标、所述预设重叠比例、所述预切割小图尺寸及所述预设外扩比例,确定各标注点在所述大图上的绝对坐标,得到包含有标注点绝对坐标的大图。

    一种目标样本标注生成方法

    公开(公告)号:CN114066979A

    公开(公告)日:2022-02-18

    申请号:CN202111186916.7

    申请日:2021-10-12

    Abstract: 本发明公开了一种目标样本标注生成方法,属于深度学习技术领域,解决多个需求不同图片大小的目标样本的神经网络中复用的问题。方法包括:根据预设重叠比例、预切割小图尺寸及预设外扩比例对大图进行切割;对切割得到的小图中的目标样本进行标注,得到标注点在各小图上的相对坐标;根据相对坐标对应小图相对于大图的切割位置、在各小图上的相对坐标、所述预设重叠比例、所述预切割小图尺寸及所述预设外扩比例,确定各标注点在所述大图上的绝对坐标,得到包含有标注点绝对坐标的大图。

    标注样本的方法及装置、电子设备、存储介质

    公开(公告)号:CN117576578A

    公开(公告)日:2024-02-20

    申请号:CN202311478400.9

    申请日:2023-11-08

    Abstract: 本申请涉及深度学习技术领域,公开一种标注样本的方法,包括:按照设定的待限定尺寸在原始图像中限定出至少一个待标注图像;将每个待标注图像中的标注坐标转换成在所述原始图像中的绝对坐标,获得包含有绝对坐标的原始图像。这样,使得待标注图像中目标对象的标注坐标能够直接显示在原始图像中,进而在进行深度学习时,能够根据目标对象的标注坐标和神经网络模型的图像尺寸需求对原始图像进行切割,从而实现带有目标对象绝对坐标的原始图像能够在多个尺寸要求不同的神经网络模型中复用的效果。本申请还公开一种标注样本的装置、电子设备和存储介质。

Patent Agency Ranking